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Abstract. Numerical resolution for 6-D Wigner dynamics under the Coulomb potential faces4
with the combined challenges of high dimensionality, nonlocality, oscillation and singularity. In par-5
ticular, the extremely huge memory storage of 6-D grids hinders the usage of all existing deterministic6
numerical scheme, which is well-known as the curse of dimensionality. To surmount these difficulties,7
we propose a massively parallel solver, termed the CHAracteristic-Spectral-Mixed (CHASM) scheme,8
by fully exploiting two distinct features of the Wigner equation: Locality of spatial advection and9
nonlocality of quantum interaction. Our scheme utilizes the local cubic B-spline basis to interpo-10
late the local spatial advection. The key is to use a perfectly matched boundary condition to give11
a closure of spline coefficients, so that distributed pieces can recover the global one as accurately12
as possible owing to the rapid decay of wavelet basis in the dual space, and communication costs13
are significantly reduced. To resolve the nonlocal pseudodifferential operator with weakly singular14
symbol, CHASM further adopts the truncated kernel method to attain a highly efficient approxima-15
tion. Several typical experiments including the quantum harmonic oscillator and Hydrogen 1s state16
demonstrate the accuracy and efficiency of CHASM. The non-equilibrium electron-proton couplings17
are also clearly displayed and reveal the uncertainty principle and quantum tunneling in phase space.18
Finally, the scalability of CHASM up to 16000 cores is presented.19
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1. Introduction. The recently burgeoned developments in nano-science and23

semiconductors, such as the nano-wired FET at 3nm node [1], as well as those in24

high energy density physics [2], quantum tomography [3] and quantum optics [4, 5],25

urgently demand efficient and highly accurate simulations of high-dimensional quan-26

tum models. Specifically, the Wigner equation [6] under the Coulomb interaction is27

of great importance in describing the non-equilibrium electron dynamics in quantum28

regime, including the electron-proton couplings in hot density matter [2], the quan-29

tum entanglement in nano-wires [7], the quantum tunneling effects in nanodevices30

[8], strong-field atomic ionization processes [4, 5] and visualization of quantum states31

[9, 10], owing to its huge advantage in calculating quantum statistics and experimen-32

tal observability [11]. However, an investigation of realistic quantum systems in 3-D33

spatial space requires to solve the Wigner equation in 6-D phase space, so that the34

curse of dimensionality (CoD) poses a tremendous obstacle to its numerical resolution.35

Indeed, it has already taken over thirty years to develop efficient Wigner solvers,36

including both deterministic and stochastic algorithms. In contrast to the relatively37

newer branch of particle-based stochastic methods [12–14], which usually exhibit38

slower convergence rate, grid-based deterministic solvers allow highly accurate nu-39

merical resolutions in the light of their concise principle and solid mathematical foun-40

dation, ranging from the finite difference scheme [15] and the spectral collocation41

method combined with the operator splitting [16, 17] to the recent advanced tech-42

niques such as the spectral element method [18–20], the spectral decomposition [21]43

and the Hermite spectral method [22, 23], as well as those for advection such as the44
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discontinuous Galerkin method [24], WENO scheme [25] and exponential integrators45

[22]. Unfortunately, there still remains a huge gap in terms of the applicability of46

even the state-of-the-art deterministic scheme to full 6-D problems, and the fore-47

most problem is definitely the storage of 6-D grid mesh. On one hand, the required48

memory to store a fine 6-D tensor is still prohibitive for a single computer, e.g., the49

requirement to store a uniform grid mesh of size 813× 643 in single precision is about50

813 × 643 × 4/10003 ≈ 557GB. On the other hand, the highly oscillatory structure51

of the Wigner function poses a severe restriction on the sampling frequency [15],52

which is further complicated by singular potentials like the Coulomb interaction. As53

a consequence, it strongly calls for an efficient algorithm that should be highly ac-54

curate enough to capture the fine structure of the solutions and suitable for modern55

high-performance computing platform.56

This paper makes the first attempt to simulate the 6-D Wigner equation via a57

massively parallel deterministic solver. The proposed CHArcteristic-Spectral-Mixed58

(CHASM) scheme takes advantages of both the parallel semi-Lagrangian scheme59

[26, 27] and the spectral method, under the same guiding principle in our preced-60

ing advective-spectral-mixed (ASM) scheme [19]. Specifically, it exploits two distinct61

features of the Wigner equation: Locality in spatial advection and nonlocality in62

quantum interaction. The local cubic B-spline, as a kind of wavelet basis, is applied63

for interpolating the local advection, while the Fourier basis is adopted to tackle the64

nonlocal pseudodifferential operator (ΨDO) due to its intrinsic global and oscillatory65

nature.66

There are two major difficulties to be resolved. The first is how to distribute a67

global cubic spline into several patches because solving the spline coefficients indeed68

requires the information from all patches. Owing to a key observation of the rapid69

decay property of wavelet basis in the dual space [26, 28], we introduce a perfectly70

matched boundary condition (PMBC) for patched splines to give a closure of the spline71

coefficients, which allows the local splines to recover the global one as accurately as72

possible. Domain decomposition is only performed in the spatial direction so that73

communications can be restricted in adjacent processors.74

The second is how to tackle ΨDO with a singular Riesz kernel (see Eq. (2.4))75

as the singularity causes troubles in the convergence of the commonly used Fourier76

spectral method [16, 29]. Motivated from recent progress in fast algorithm for singular77

convolution [30–32], we utilize the truncated kernel method (TKM) to derive a highly78

efficient approximation to ΨDO. With these endeavors, we succeed in simulating79

6-D Wigner-Coulomb dynamics of an electron wavepacket attracted by one or two80

protons. The solutions may help reveal the presence of electron-proton coupling [2, 7],81

uncertainty principle and quantum tunneling [33] in phase space.82

The rest of this paper is organized as follows. In Section 2, we briefly review the83

background of the Wigner equation and the characteristic method. In Section 3, we84

mainly illustrate the construction of local splines to interpolate the spatial advection.85

Section 4 discusses TKM for ΨDO with a weakly singular symbol. Several typical86

numerical experiments are performed in Section 5 to verify the accuracy of CHASM,87

where a first attempt to simulate quantum Coulomb dynamics in 6-D phase space is88

obtained. Finally, the conclusion is drawn in Section 6.89

2. Background. As a preliminary, we make a brief review of the single-body90

Wigner equation and outline the framework of the characteristic method.91

2

This manuscript is for review purposes only.



2.1. The Wigner equation. Quantum mechanics in phase space is rendered92

by the Wigner function, the Weyl-Wigner transform of a density matrix ρ(x1,x2, t),93

(2.1) f(x,k, t) =

∫
R3

ρ(x− y
2
,x+

y

2
, t)e−ik·ydy,94

where x is the spatial variable and k the Fourier conjugated wave vectors. The Wigner95

function plays a similar role as the probability density function, but allows negative96

values due to Heisenberg’s uncertainty principle. The governing equation, known as97

the Wigner equation, is a partial integro-differential equation,98

(2.2)
∂

∂t
f(x,k, t) +

~k
m
· ∇xf(x,k, t) = ΘV [f ](x,k, t),99

where m is the mass, ~ is the reduced Planck constant and ΨDO reads as100

(2.3) ΘV [f ](x,k, t) =
1

i~(2π)3

∫∫
R6

e−i(k−k′)·yDV (x,y, t)f(x,k′, t)dydk′101

with DV (x,y, t) = V (x+ y
2 )− V (x− y

2 ).102

The Coulomb interaction in x ∈ R3 is of great importance in realistic applications.103

When the atomic unit m = ~ = e = 1 is adopted and the attractive Coulomb potential104

is considered, V (x) = −1/|x− xA|, ΨDO is equivalent to105

(2.4) ΘV [f ](x,k, t) =
2

c3,1i

∫
R3

e2i(x−xA)·k′ 1

|k′|2
(f(x,k − k′, t)− f(x,k + k′, t))dk′106

with cn,α = πn/22αΓ(α2 )/Γ(n−α2 ). It is a twisted convolution involving both singular107

kernel and phase factor. When the interacting body is torn away from the atom, i.e.,108

|x− xA| increases, ΨDO decays as the phase factor becomes more oscillating.109

Since ΨDO is real-valued due to the symmetry k→ −k and110

(2.5)

∫
R3

ΘV [f ](x,k, t)dk = 0 ⇐⇒ d

dt

∫∫
R3×R3

f(x,k, t)dxdk = 0,111

the total mass is conserved. The Wigner equation with ΨDO (2.4) have many sta-112

tionary solutions given by the Weyl-Wigner transform of ρ(x,y) = φ(x)φ∗(y), with113

φ(x) being eigenfunction of the corresponding Schrödinger equation.114

2.2. The Lawson scheme and the characteristic methods. A typical nu-115

merical scheme for solving Eq. (2.2) is the characteristic method. Its derivation starts116

from the variation-of-constant formula of (2.2),117

(2.6) f(x,k, t) = e−
~t
m k·∇xf(x,k, 0) +

∫ t

0

e−
~τ
m k·∇xΘV [f ](x,k, t− τ)dτ,118

where the semigroup e−
~τ
m k·∇x corresponds to the advection along the characteristic119

line, say, e−
~τ
m k·∇xf(x,k, t) = f(Aτ (x,k), t− τ) with Aτ (x,k) = (x− ~k

m τ,k).120

The characteristic method approximates the integral on the right hand side of121

Eq. (2.6) by polynomial interpolation in the light of the Lawson scheme,122

(2.7) fn(x,k) = fn−1(Aτ (x,k)) + τ

q∑
j=0

βjΘV [fn−j ](Ajτ (x,k)).123
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We adopt the one-stage Lawson predictor-corrector scheme (LPC1):124

Predictor : f̃n+1(x,k) = fn(Aτ (x,k)) + τΘV [fn](Aτ (x,k)),

Corrector : fn+1(x,k) = fn(Aτ (x,k)) +
τ

2
ΘV [f̃n+1](x,k) +

τ

2
ΘV [fn](Aτ (x,k)).

125

The Strang splitting is also an efficient strategy for temporal integration and its success126

in solving 6-D Boltzmann equation was reported in [34]. However, the non-splitting127

Lawson scheme is believed to be more advantageous in numerical stability [35].128

The remaining problem is how to evaluate the exact flow fn(Aτ (x,k)) and129

ΘV [fn](Aτ (x,k)) on the shifted grid. In general, they can be interpolated via a130

specified basis expansion of fn within the framework of the semi-Lagrangian method,131

such as the spline wavelets [36, 37], the Fourier basis and the Chebyshev polynomials132

[20]. Regarding that the spatial advection is essentially local, we adopt the cubic133

B-spline as it is a kind of wavelet basis with low numerical dissipation and the cost134

scales as O(Nd
x ) (d is dimensionality) [36].135

Here we focus on the unidimensional uniform setting, while the multidimensional136

spline can be constructed by its tensor product (see Section 3.2 below). Suppose the137

computational domain is [x0, xN ] containing N + 1 grid points with uniform spacing138

h = (xN − x0)/N . The projection of ϕ(x) onto the cubic spline basis is given by139

(2.8) ϕ(x) ≈ s(x) =

N+1∑
ν=−1

ηνBν(x) subject to ϕ(xi) = s(xi), i = 0, . . . , N,140

where Bν is the cubic B-spline with compact support over four grid points,141

(2.9) Bν(x) =



(x− xν−2)3

6h3
, x ∈ [xν−2, xν−1],

− (x− xν−1)3

2h3
+

(x− xν−1)2

2h2
+

(x− xν−1)

2h
+

1

6
, x ∈ [xν−1, xν ],

− (xν+1 − x)3

2h3
+

(xν+1 − x)2

2h2
+

(xν+1 − x)

2h
+

1

6
, x ∈ [xν , xν+1],

(xν+2 − x)3

6h3
, x ∈ [xν+1, xν+2],

0, otherwise,

142

implying that Bν−1, Bν , Bν+1, Bν+2 overlap a grid interval (xν , xν+1) [26].143

Denote by η = (η−1, . . . , ηN+1). By taking derivatives of Bν(x), it reads that144

(2.10) s′(xi) = − 1

2h
ηi−1 +

1

2h
ηi+1, s′′(xi) =

1

h2
ηi−1 −

2

h2
ηi +

1

h2
ηi+1.145

Since Bi±1(xi) = 1
6 and Bi(xi) = 2

3 , it yields N + 1 equations for N + 3 variables,146

(2.11) ϕ(xi) =
1

6
ηi−1 +

2

3
ηi +

1

6
ηi+1, 0 ≤ i ≤ N.147

Two additional equations are needed to solve a unique η and can be completed by148

specified boundary conditions at both ends. For instance, consider the Hermite bound-149

ary condition (also termed the clamped spline) [36], s′(x0) = φL, s
′(xN ) = φR, where150

φL and φR are parameters to be determined, it is equivalent to add two constraints,151

(2.12) φL = − 1

2h
η−1 +

1

2h
η1, φR = − 1

2h
ηN−1 +

1

2h
ηN+1.152
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In particular, when φL = φR = 0, it reduces to the Neumann boundary condition153

on both ends. Alternative choice is the natural boundary condition for cubic spline,154

which requires s′′(x0) = 0, s′′(xN ) = 0, or equivalently,155

(2.13)
1

h2
η−1 −

2

h2
η0 +

1

h2
η1 = 0,

1

h2
ηN−1 −

2

h2
ηN +

1

h2
ηN+1 = 0.156

Combining Eqs. (2.11) and (2.12) (or (2.13)) yields an algebraic equations157

(2.14) AηT = (φL, ϕ(x0), . . . , ϕ(xN ), φR)T ,158

with a tridiagonal matrix A, which can be solved by the sweeping method [36].159

Remark 1. In our preceding ASM scheme, we suggested to use three-stage char-160

acteristic method and investigated its convergence and mass conservation property161

[19]. However, after a thorough comparison among various integrators as well as the162

Strang splitting scheme, we have found that LPC1 outperforms others in both numer-163

ical accuracy and stability, as it avoids both multi-stage interpolations and splitting164

errors. In particular, LPC1 requires spatial interpolation once and calculations of165

ΨDO twice per step, so that its complexity is definitely lower than multi-stage ones.166

For details, the readers can refer to Section 4 of our supplementary material [38].167

3. Local spatial advection and local spline interpolation. When we shift168

to a full 6-D simulation, the foremost problem encountered is to represent the Wigner169

function on a N3
x × N3

k grid mesh, which is usually prohibitive for single machine170

and has to be distributed into multiple ones. This may cause some troubles in solving171

Eq. (2.14) as it requires the information of all interpolated points, so that its efficiency172

on a distributed-memory environment is dramatically hindered by high communica-173

tion costs. Fortunately, the cubic B-spline can be essentially constructed in a localized174

manner, laying the foundation for the parallel semi-Lagrangian scheme [26, 27, 36].175

The local cubic spline basis seems to be very suitable to tackle the local advection176

mainly for two reasons. First, it is possible for local splines to recover the global one177

as accurately as possible by imposing some effective boundary conditions on local178

pieces, which may potentially avoid global communications. Second, the constant179

advection on 3-D equidistributed grid mesh can be interpolated by a convolution with180

a 4×4×4 window function with relatively small computational cost of about 43N3
xN

3
k .181

In particular, when ~kmaxτ/~ ≤ h, it can avoid non-adjacent communications.182

3.1. Perfectly matched boundary condition for local spline. Without loss183

of generality, we divide N+1 grid points on a line into p uniform parts, with M = N/p,184

x0 < x1 < · · · < xM−1

the first processor

< xM
shared

< · · · < x(p−1)M

shared

< x(p−1)M+1 < · · · < xpM

p-th processor

,(3.1)185

186

where the l-th processor manipulates M + 1 grid points Xl = (x(l−1)M , . . . , xlM ),187

l = 1, . . . , p and xM , x2M , . . . , x(p−1)M are shared by the adjacent patches. Denote188

by η(l) = (η
(l)
−1, . . . , η

(l)
M+1) the local spline coefficients for l-th piece. The target is to189

approximate the global spline coefficients (η−1+(l−1)M , . . . , ηM+1+(l−1)M ) by η(l).190

There are two approaches to solving η(l) without global communications. One is191

based on a key observation that the off-diagonal elements of the inverse spline matrix192

A−1 decay exponentially away from the main diagonal [26], so that the coefficients193

shared by adjacent patches can be calculated by merging the left and right truncated194

sequences with only local communications. The other is to impose effective Hermite195
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boundary conditions on local pieces and to approximate the unknown first deriva-196

tives on the shared grid points by finite difference stencils [36]. The former is more197

preferable in consideration of accuracy and a benchmark can be found in Section 2.3198

of our supplementary note [38], while the latter seems more friendly to implementa-199

tions. Our PMBC combines the advantages of both approaches and provides a unified200

framework for different boundary conditions imposed on the global spline.201

3.1.1. Truncation of off-diagonal elements. Denote A−1 = (bij), −1 ≤202

i, j ≤ pM + 1. The solutions of global set of equations (2.14) are represented as203

(3.2) ηi = biiϕ(xi) +

i−1∑
j=−1

bijϕ(xj) +

pM+1∑
j=i+1

bijϕ(xj), i = −1, . . . , pM + 1,204

with the convention ϕ(x−1) = φL, ϕ(xpM+1) = φR. Despite the inverse spline matrix205

A−1 is a full matrix, its off-diagonal elements exhibit a rapid and monetone decay206

away from the diagonal element [26] (see Figure 1(a)), which is a well-known fact207

in the wavelet theory [28]. One can see in Figure 1(b) that the elements bij decays208

exponentially as |i− j| increases.

5 10 15 20 25 30

5

10

15

20

25

30

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(a) Distribution of log10(|bij |) for N = 33.
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(b) Rapid decay of off-diagonal elements.

Fig. 1. The distribution of elements in inverse spline transform matrix A−1: The off-
diagonal elements exhibit a rapid and monetone decay away from the main diagonal.

209
This fact allows us to truncate Eq. (3.2) and throw away the terms |i− j| ≥ nnb,210

(3.3) ηi ≈ biiϕ(xi) +

i−1∑
j=i−nnb+1

bijϕ(xj) +

i+nnb−1∑
j=i+1

bijϕ(xj), i = −1, . . . , pM + 1.211

In particular, when nnb ≤ M , the coefficients η(l) = (η
(l)
−1, . . . , η

(l)
M+1) can be well212

approximated when Xl−1 and Xl+1 are known, without information of X1, . . . ,Xl−2213

and Xl+2, . . . ,Xp [26]. Thus the spline transform is localized as data exchanges are214

only needed in adjacent processors and global communications are completely avoided.215

3.1.2. Construction of PBMC. Essentially, the role of spline boundary con-216

ditions is to give a closure of coefficients η. Therefore, for l-th patch, it is equivalent217

to impose effective Hermite boundary conditions on both ends of the local spline,218

− 1

2h
η

(l)
−1 +

1

2h
η

(l)
1 = φ

(l)
L (ϕ(x0), . . . , ϕ(xpM+1)), l = 2, . . . , p,

− 1

2h
η

(l)
M−1 +

1

2h
η

(l)
M+1 = φ

(l)
R (ϕ(x0), . . . , ϕ(xpM+1)), l = 1, . . . , p− 1,

(3.4)219
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where − 1
2hη

(l+1)
−1 + 1

2hη
(l+1)
1 = − 1

2hη
(l)
M−1 + 1

2hη
(l)
M+1, implying that φ

(l)
R = φ

(l+1)
L ,220

1 ≤ l ≤ p− 1. Using the truncated stencils (3.3), it yields the formulation of PMBC221

φ
(l)
R = φ

(l+1)
L ≈ 1

2
c0,lϕ(xlM ) +

nnb∑
j=1

c−j,lϕ(xlM−j)

stored in left processor

+
1

2
c0,lϕ(xlM ) +

nnb∑
j=1

c+j,lϕ(xlM+j)

stored in right processor

,
222

where c0,l = − blM−1,lM

2h +
blM+1,lM

2h and223

c−j,l = −blM−1,lM−j

2h
+
blM+1,lM−j

2h
, c+j,l = −blM−1,lM+j

2h
+
blM+1,lM+j

2h
.(3.5)224

Following the same idea, one can represent all kinds of spline boundary condition225

by PMBC. For instance, when the natural boundary conditions (2.13) are adopted226

and denote Ã the corresponding coefficient matrix, (̃bij) = Ã−1,−1 ≤ i, j ≤ N + 1,227

then the equation ÃηT = (0, ϕ(x0), . . . , ϕ(xN ), 0)T can be transformed into AηT =228

(φ
(1)
L , ϕ(x0), . . . , ϕ(xN ), φ

(p)
R )T with229

(3.6)

φ
(1)
L =

η1 − η−1

2h
≈

nnb∑
j=0

c+j,0ϕ(xj),

stored in first processor

φ
(p)
R =

ηN+1 − ηN−1

2h
≈

nnb∑
j=0

c−j,pϕ(xN−j),

stored in last processor

230

where c+j,0 = 1
2h (−b̃−1,j + b̃1,j) and c−j,p = 1

2h (−b̃pM−1,pM−j + b̃pM+1,pM−j).

3-p22-p2 4-p2

2-p11-p10-p1LB-p1

4-p3 5-p3 6-p3 RB-p3

RB-p1

LB-p2 RB-p2

LB-p3

R-PMBC ξ
(1)
R

L-PMBC ξ
(2)
L

R-PMBC ξ
(2)
R

L-PMBC ξ
(3)
L

L-PMBC ξ
(2)
L

R-PMBC ξ
(2)
R

R-PMBC ξ
(1)
R

L-PMBC ξ
(3)
L

L-PMBC ξ
(1)
L

R-PMBC ξ
(3)
R

Global spline boundary

Global spline boundary

Fig. 2. An illustration of the cubic spline coefficients in the distributed setting: Seven grid points
are distributed evenly in three processors. For each processor, PMBCs are assembled by exchanging
and merging the stencils in the adjacent neighborhood. The boundary condition for global spline can
also be realized by imposing effective Hermite boundary conditions on the first and last processors.

231
Figure 2 illustrates the construction of three local splines by seven grid points232

X = (x0, . . . , x6), with X1 = (x0, x1, x2), X2 = (x2, x3, x4) and X3 = (x4, x5, x6).233

(1) The left boundary φ
(1)
L for the first processor (LB-p1) and the right boundary234

φ
(p)
R for the last processor (RB-p3) are calculated by Eq. (3.6).235

(2) The l-th processor calculates the following quantities,236

L-PMBC : ξ
(l)
L =

1

2
c0,lϕ(x(l−1)M ) +

nnb∑
j=1

c+j,lϕ(x(l−1)M+j),

R-PMBC : ξ
(l)
R =

1

2
c0,lϕ(xlM ) +

nnb∑
j=1

c−j,lϕ(xlM−j).

237
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(3) The l-th processor transfers ξ
(l)
L to its left neighbor: (l-1)-th processor (l > 1),238

and transfers ξ
(l)
R to its right neighbor: (l+1)-th processor (l < p).239

(4) For l-th processor, φ
(l)
L = ξ

(l)
L + ξ

(l−1)
R (l > 1) and φ

(l)
R = ξ

(l+1)
L + ξ

(l)
R (l < p).240

(5) Each patch solves spline coefficients η(l) via the exact LU decomposition of241

(M + 3)× (M + 3) tridiagonal matrix A(l),242

A(l)(η(l))T = LU(η(l))T = (φ
(l)
L , ϕ(x(l−1)M ), . . . , ϕ(xlM ), φ

(l)
R )T .243

3.1.3. Interpolation and correction for constant advection. Once the244

spline coefficients η(l) are determined, interpolating ϕ(x − αh) with a constant shift245

αh can be realized by taking a weighted summation of Bν(x−αh) over indices ν with246

the whole cost being O(4N). Suppose all grid points are shifted by αh,247

(3.7) ϕ(xj − αh) =

N+1∑
ν=−1

ηνBν(xj − αh), 0 ≤ j ≤ N,248

where Bν(xj) only takes five possible values b1, b2, b3, b4 and 0, and249

b1 =
(1− α)3

6
, b2 = − (1− α)3

2
+

(1− α)2

2
+

1− α
2

+
1

6
,

b3 = −α
3

2
+
α2

2
+
α

2
+

1

6
, b4 =

α3

6
.

(3.8)250

As the shifted grid point may move outside the domain [x0, xN ], it shall add ghost251

splines B−2(x) and BN+2(x) with coefficients η−2 = ηN+2.252

When 0 < α < 1, xj − αh ∈ [xj−1, xj ], a simple calculation yields that253

ϕ(xj − αh) =ηj−2Bj−2(xj − αh) + ηj−1Bj−1(xj − αh)

+ ηjBj(xj − αh) + ηj+1Bj+1(xj − αh).
(3.9)254

Similarly, one can tackle the case −1 < α < 0, xj − αh ∈ [xj , xj+1], yielding that255

(3.10) ϕ(xj − αh) =

{
(ηj−2, ηj−1, ηj , ηj+1) · (b4, b3, b2, b1), 0 < α < 1,

(ηj−1, ηj , ηj+1, ηj+2) · (b1, b2, b3, b4), −1 < α < 0.
256

The interpolation procedure under the parallel setting is almost the same except257

a correction procedure. Since the ghost splines with η
(l)
−2 = η

(l)
M+2 = 0 have to be258

added on both sides of all local splines, the shifted grid points outside the subdomain259

might not be properly interpolated. Therefore, the correct interpolated values need260

to be transferred from its adjacent processor. Figure 3 illustrates the interpolation of261

the constant advection under the distributed environment. Again, seven grid points262

are distributed into three clusters, with p = 3 and N = 6.263

(1) When α > 0, (x0 − αh) < x0, the interpolation of ϕ(x0 − αh) uses the left264

ghost spline. Similarly, when α < 0, (xN − αh) > xN , the interpolation of265

ϕ(xN − αh) uses the right ghost spline.266

(2) For the shared grid points x2l, e.g., l = 1, 2, when α > 0, (x2l − αh) < x2l,267

the left processor interpolates ϕ(x2l−αh) correctly and sends the value to its268

right neighbor. Similarly, when α < 0, (x2l − αh) > x2l, the right processor269

interpolates ϕ(x2l − αh) correctly and sends the value to its left neighbor.270
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3210LG 4 5 6 RG

k < 0, p2 to p1

k > 0, p1 to p2

k < 0, p3 to p2

k > 0, p2 to p3

Nodes (0)-(2) in p1 Nodes (2)-(4) in p2 Nodes (4)-(6) in p3

k > 0, Left ghost to p1

k < 0, Right ghost to p3

Fig. 3. Illustration of the local cubic spline interpolation of the constant advection. The shifted
grid points are first interpolated within each processor independently. Then the boundary nodes that
shifts to other local pieces are corrected from the adjacent neighborhood. The ghost regions are added
on the first and last processors for imposing specified boundary condition on the global spline.

3.2. Parallel implementation in 6-D phase space. For a 6-D problem, the271

Wigner function is expanded as the tensor product of cubic splines in three directions,272

(3.11) f(x,k, t) ≈
Nx+1∑
ν1=−1

Nx+1∑
ν2=−1

Nx+1∑
ν3=−1

ην1,ν2,ν3(k, t)

3∏
j=1

Bνj (xj).273

Hereafter we take a (Nx + 1)3 ×N3
k uniform grid mesh for 6-D phase space. Because274

k-domain involves nonlocal interaction, the domain decomposition is only performed275

in x-space to split the whole domain into p3 mutually disjoint rectangular patches,276

where p divides into Nx. Each processor manipulates (Nxp + 1)3 ×N3
k grid points.277

The 3-D cubic splines can be constructed in each direction successively, but each278

‘grid point’ to be interpolated is a long vector of length N3
k , and PMBC turns out to279

be a (Nxp + 1)2N3
k tensor. Thus for each processor, the cost of constructing the cubic280

spline is O((Nxp + 1)3N3
k ) and that of exchanging six PMBCs is about 6(Nxp + 1)2N3

k .281

For the constant advection αh = (α1h, α2h, α3h), interpolating f(xj − αh,k, t)282

is a convolution of 64 grid points with a 4× 4× 4 window function since283

(3.12) f(x−αh,k, t) ≈
Nx+1∑
ν1=−1

Nx+1∑
ν2=−1

Nx+1∑
ν3=−1

ην1,ν2,ν3(k, t)

3∏
j=1

Bνj (xj − αjh)284

has only 43 nonzero terms Bνj (xj − αjh) obtained by Eqs. (3.9) and (3.10). Thus285

interpolating one point involves 64 multiplications and 64 summations, and the com-286

putational and communication costs are 64(Nx+1
p )3N3

k and (Nx+1
p )2N3

k , respectively.287

4. Nonlocal quantum interaction and truncated kernel method. Once288

CoD is alleviated via the local cubic spline construction, the remaining challenge is289

to seek a highly efficient approximation to ΨDO with a weakly singular symbol, as it290

has to be calculated twice per LPC1 evolution. To this end, we borrow the idea of291

TKM [30–32] to derive a spectrally accurate approximation for smooth and rapidly292

decreasing Wigner function, with its implementation greatly accelerated by FFTs.293

4.1. Truncated kernel method. Here we omit the time variable for brevity.294

By a change of variables, we can rewrite (2.4) as follows295

ΘV [f ](x,k) =
2

c3,1i

∫
R3

e2i(x−xA)·k′ − e−2i(x−xA)·k′

|k′|2
f(x,k − k′)dk′ := (I+ − I−),

I±(x,k) =
2

c3,1i

∫
R3

e±2i(x−xA)·k′

|k′|2
f(x,k − k′)dk′.

296
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Note that I+−I− = 2<(I+) for real-valued function f(x,k), therefore, the above297

integral can be reduced to the computation of I+. It notes that298

I+(x,k) =
2

c3,1i
e2i(x−xA)·k

∫
R3

1

|k′|2
e−2i(x−xA)·(k−k′)f(x,k − k′)dk′

=
2

c3,1i
e2i(x−xA)·k (|k|−2 ∗ fs

)
(x,k),

(4.1)299

where fs(x,k) := f(x,k)e−2i(x−xA)·k is a smooth and fast-decaying complex-valued300

function. The twisted convolution evaluation boils down to the standard convolution301

of singular kernel |k|−2 with smooth fast-decaying function fs(x,k). For brevity, we302

shall omit x and focus on the following convolution303

Φ(k) = (U ∗ fs)(k) :=

∫
R3

U(k − k′)fs(k′)dk′,304

where the kernel U(k) = |k|−2 is singular and the Wigner function f(k) is assumed to305

be smooth and fast-decaying. It is reasonable to assume the density to be numerically306

supported on a bounded domain, for example, a rectangular Ω := [−Lk, Lk]3 ⊂ R3,307

and to utilize Fourier spectral method. To compute Φ on the same domain Ω, we308

choose to apply TKM [30, 31] which is an O(N logN) fast algorithm, implemented309

with FFT, and achieves spectral accuracy.310

The basic idea is to screen the unnecessary interaction and apply trapezodial311

quadrature to the smooth-integrand Fourier transform, i.e., for k ∈ Ω, it has that312

Φ(k) =

∫
R3

U(k − k′)fs(k′)dk′ ≈
∫

Ω

U(k − k′)fs(k′)dk′ =

∫
R3

UD(k − k′)fs(k′)dk′,313

where the truncated kernel UD(k) is defined as314

(4.2) UD(k) :=

{
U(k), |k| ≤ D,
0, |k| > D,

315

with D = diam Ω := maxk,k′∈Ω |k − k′|. The second equality holds because UD(k −316

k′) = 0, ∀ k ∈ Ω, k′ ∈ Ωc. By the Paley-Wiener Theorem [39], we know that317

the Fourier transform of UD is smooth, therefore, it is convenient to compute the318

convolution’s Fourier transform as follows319

(4.3) Φ(k) =
1

(2π)3

∫
R3

ÛD(ξ)f̂s(ξ) eik·ξ dξ, k ∈ Ω,320

with f̂s(ξ) = Fk→ξfs(k) =
∫
R3 f

s(k) e−ik·ξ dk with its inverse denoted by F−1
ξ→k and321

ÛD(ξ) =

∫
R3

UD(k) e−ik·ξ dk = 4π

∫ D

0

U(k)k2 sin(k|ξ|)
k|ξ|

dk322

=
4π

|ξ|

∫ |ξ|D
0

sin t

t
dt =

4π

|ξ|
Si(|ξ|D),(4.4)323

with Si(x) :=
∫ x

0
sin t/t dt being the sine integral function. The asymptotic is ÛD(ξ) ≈324

4Dπ − 2
9 (D3π)|ξ|2 +O(|ξ|4) as |ξ| → 0.325

As is seen, there is not any singularity in ÛD(ξ). However, the kernel truncation326

brings in extra oscillations Si(|ξ|D) to the integrand. To resolve such oscillations, we327
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need a fine mesh in the frequency space ξ, which, by the duality argument, corresponds328

to a large computational domain in the physical space k. Recently, Liu et al proved329

that a threefold, instead of fourfold, zero-padding of fs(·,k) is sufficient to resolve330

such extra oscillation in (4.3), and we refer the readers to [32] for more details.331

To sum up, we derived a discretized approximation ΘT
V [f ] to ΘV [f ] as follows332

ΘT
V [f ](x,kp) =

2

c3,1i
e2ix̃·kpF−1

ξn→kp

[
ÛD(ξn)Fkp→ξn

(
e−2ix̃·kpf(x,kp)

)]
− 2

c3,1i
e−2ix̃·kpF−1

ξn→kp

[
ÛD(ξn)Fkp→ξn

(
e2ix̃·kpf(x,kp)

)]
,

(4.5)333

where x̃ = x− xA, kp = kijl is the discrete grid point evenly spaced in each spatial334

direction of Ω, and Fkp→ξn and F−1
ξn→kp

denote the forward and backward discrete335

Fourier transform of size (3Nk)3 with threefold zero-padding of f(·,kp), respectively.336

Remark 2. Before moving to the detailed implementation, let us make a compar-337

ison between TKM and the commonly used pseudo-spectral method [16, 29]. In fact,338

ΘT
V [f ](x,kp) can be rewritten as339

(4.6) ΘT
V [f ](x,kp) = F−1

ξn→kp

(
σD(x, ξn)Fkp→ξnf(x,kp)

)
,340

with a non-singular symbol σD(x, ξ) given by341

σD(x, ξ) =
2

c3,1i

(
S2x̃ ÛD(ξ) S−2x̃ − S−2x̃ ÛD(ξ) S2x̃

)
, x̃ = x− xA,342

and Sαg(ξ) = g(ξ −α) is the shift operator, while ΨDO (2.4) in R3 × R3 reads that343

(4.7) ΘV [f ](x,k) = F−1
ξ→k(σ(x, ξ)f̂(x, ξ)),344

with a singular symbol σ(x, ξ) = 2
c3,1i (S2x̃ Û(ξ) S−2x̃ − S−2x̃ Û(ξ) S2x̃). When f345

is approximated by a truncated Fourier series in k-space, the formula (4.6) is almost346

the same as the pseudo-spectral approach except the difference between σD(x, ξ) and347

σ(x, ξ), as well as zero-padding. In other words, the difficulty induced by singular348

symbol is resolved by exploiting an elegant fact the Fourier conjugate of truncated349

kernel UD removes the singularity at origin. By contrast, the widely used pseudo-350

spectral method suffers from large errors near singularity and numerical instability,351

which can be alleviated by TKM. Details are referred to Section 3 of our supplementary352

note [38].353

In practice, with a precomputation technique, the above quadrature can be im-354

plemented only with twofold zero-padding of the source function fs(·,kp). As pointed355

out in [30], after plugging the finite Fourier series approximation of size (3Nk)3 into356

(4.3), reducing zero-padding terms and utilizing the symmetry of ÛD, we can refor-357

mulate the above quadrature (4.5) into the following discrete convolution358

(4.8) Φ(kijl) ≈ Φijl =

Nk∑
i′=1

Nk∑
j′=1

Nk∑
l′=1

Ti−i′,j−j′,l−l′f
s
i′j′l′ ,359

where fsijl is the numerical approximation of function fs(·,kp),p ∈ Λ with index set360

Λ :=
{

(i, j, l) ∈ Z3
∣∣1 ≤ i, j, l ≤ Nk}. The convolution tensor Ti,j,l is symmetric in361

each direction, e.g., Ti,j,l = T−i,j,l, and is given explicitly as follows362

(4.9) Tp :=
1

(3Nk)3

∑
n∈I

ÛD(ξn)e
2πip·n
3Nk , p ∈ Λ,363
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where ξn = 2π
6Lk
n, n ∈ I is the Fourier mode and the dual index set I is defined364

(4.10) I :=
{

(n1, n2, n3) ∈ Z3
∣∣nj = −3Nk/2, . . . , 3Nk/2−1

}
.365

It is clear that the tensor (4.9) can be calculated with a backward FFT of length366

(3Nk)3 = 27N3
k , which inevitably requires a quite large memory. Fortunately, com-367

pared with the original fourfold zero-padding TKM [30, 31], the minimal memory368

requirement of our algorithm is reduced further by a factor of ( 4
3 )3 = 64

27 ≈ 2.37, and369

it shall bring about a significant improvement in real simulations, especially when the370

mesh size is large enough. Therefore, our algorithm grants a much easier access even371

on a personal computer. More importantly, the tensor is of size (2Nk)3 and indepen-372

dent of the position variable x and time variable t, therefore, it can be precomputed373

only once for the whole lifetime. That is, the convolution (4.8) can be accelerated374

within O(8N3
k log(8N3

k )) flops with FFT as long as the tensor (4.9) is available.375

4.2. Error estimates. Our error estimates focus on the TKM approximation to376

the nonlocal convolution potential Φ = U ∗ fs with the singular kernel U(x) = |x|−2377

and the effective density function fs(x,k) = f(x,k)e−2i(x−xA)·k.378

Theorem 1. Suppose that Wigner function f(x,k) is a smooth and fast-decaying379

function of k and has a x-independent common compact support, i.e., supp(f(x, ·)) (380

Ω = [−Lk, Lk]3, then we have for any integer m ∈ Z+,381

‖ΘV [f ]−ΘT
V [f ]‖∞ . C |x− xA|mN

−(m− 3
2 )

k ‖f(x, ·)‖m, m ≥ 2,(4.11)382

‖ΘV [f ]−ΘT
V [f ]‖2 . C |x− xA|mN−mk ‖f(x, ·)‖m, m ≥ 1,(4.12)383

where constant C = C(Lk,m) is independent of k and ‖f(x, ·)‖m is the standard384

Sobolev norm with respect to k.385

The proof is based on the recent error estimates of TKM given by Liu et al [32].386

For brevity, we choose not to repeat the lengthy and technical proof but to directly387

quote them, and refer the readers to [32] for more details. Here Hm
p (Ω) denotes the388

subspace of Hm(Ω) with derivatives of order up to m− 1 being Ω-periodic.389

Lemma 2 ([32]). Suppose ρ(x) ∈ Hm
p (Ω) associated with the semi-norm390

(4.13) |ρ|m =

( ∞∑
k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

|k|2m|ρ̂k|2
)1/2

391

and ΦN is the numerical approximation to Eq. (4.3) with N3 uniform grid points,392

then it has that393

‖ΦN − Φ‖∞ ≤ C N−(m− 3
2 )|ρ|m, m ≥ 2,(4.14)394

‖ΦN − Φ‖2 ≤ C N−m|ρ|m, m ≥ 1,(4.15)395

where C depends only on domain size Lk and m.396

Proof of Theorem 1. The nonlocal potential is given by a similar convolution Φ =397

U ∗ ρ where the density function ρ is also smooth and fast decaying with a compact398

support and the kernel U is singular. Since the Wigner function is smooth and fast399

decaying in k and shares a common compact support, substituting fs(x,k) for ρ in400

(4.14)-(4.15), and computing its m-th semi-norm, we have401

(4.16) |fs(x,k)|m . C |x− xA|m‖fs(x, ·)‖m, ∀ m ∈ Z+.402
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Plugging back into (4.1), we have403

‖I+ − I+
Nk
‖∞ . C |x− xA|mN

−(m− 3
2 )

k ‖f(x, ·)‖m, m ≥ 2,404

‖I+ − I+
Nk
‖2 . C |x− xA|mN−mk ‖f(x, ·)‖m, m ≥ 1,405

where I+
Nk

denotes the numerical approximation of I+ using TKM. Obviously from406

(4.1), the desired twisted convolution (2.4) is effectively reduced to the real part of407

I+, which immediately completes the proof.408

Next we present the numerical errors and computational time (in seconds) in409

Table 1 to confirm the spectral convergence and efficiency of TKM with a localized410

Gaussian function f(k), from which we can see clearly that our algorithm converges411

spectrally fast and the errors approach the machine precision as Nk increases.412

Example 1. For a symmetric Gaussian function f(k) = e−|k|
2

,k ∈ R3, the413

convolution potential Φ is symmetric and reads explicitly as follows414

(4.17) Φ(k) =

(
1

|k|2
∗ f
)

(k) = 2π
3
2

DawsonF(k)

k
, k = |k|,415

with DawsonF(k) :=
∫∞

0
sin(kr) e−

k2

4 dk [40]. Then, for a scaled and shifted Gaussian416

function fα(k) = f(α(k − k0)), k0 ∈ R3, α > 0, we have Φα(k) = α−1Φ(α(k − k0)).417

Table 1
Numerical errors and computational time of TKM in Example 1.

Convergence Nk l∞-error l2-error Time(s)

0 20 40 60 80 100 120 140

-14

-12

-10

-8

-6

-4

-2

0

2

8 9.380 34.209 8.300×10−5

16 2.044 2.784 8.500×10−4

32 5.575×10−2 2.423×10−2 8.424×10−3

64 3.434×10−6 1.556×10−6 8.624×10−2

80 5.918×10−9 2.879×10−9 1.960×10−1

128 3.197×10−14 4.205×10−13 8.142×10−1

5. Numerical experiments. From this section, it begins to perform a series418

of benchmark tests and make a thorough performance evaluation of CHASM. The419

scalability of our scheme up to 16000 cores is also presented, with details of parallel420

implementations and computational environments given in Section 5.5.421

As the first step, we need to investigate the convergence, stability and mass con-422

servation property of CHASM. To this end, we test the quantum harmonic oscillator423

in 2-D phase space, where the Wigner dynamics reduces to the classical Liouville424

systems and the exact solutions are obtained by solving the Hamiltonian trajectories.425

We will show that the setting of PMBC brings in very small errors for a nonlocal426

problem and have only a slight influence on the mass conservation when the stencil427

length nnb ≥ 15.428

After that, we turn to evaluate the performance of TKM. The stationary Hydro-429

gen Wigner function of 1s state, which can be well approximated by FFTs, will be430

adopted as the initial and reference solution for the Wigner-Coulomb dynamics. Once431

the numerical accuracy is tested, it is able to study some typical quantum systems,432

such as the electron dynamics interacting with one or two protons, and reveal the433

presence of electron-proton coupling, quantum tunneling and uncertainty principle.434
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The maximal error ε∞(t) = max(x,k)∈X×K
∣∣f ref (x,k, t)− fnum (x,k, t)

∣∣, the L2-435

error ε2(t) = [
∫∫
X×K

(
f ref (x,k, t)− fnum (x,k, t)

)2
dxdk]

1
2 , and the deviation of to-436

tal mass εmass(t) = |
∫∫
X×K(fnum (x,k, t) − f ref (x,k, t = 0))dxdk| are adopted as437

the performance metrics, with f ref and fnum the reference and numerical solution,438

respectively, and X ×K denotes the computational domain. In practice, the integral439

can be replaced by the average over all grid points.440

For a 6-D problem, we adopt the reduced Wigner function onto (xj-kj) plane,441

say, Wj(x, k, t) =
∫∫

R2×R2 f(x,k, t)dx{1,2,3}\{j}dk{1,2,3}\{j}, and the spatial marginal442

distribution P (x1, x2, t) =
∫∫

R×R3 f(x,k, t)dx3dk for visualizations.443

5.1. 2-D Quantum harmonic oscillator. The first example is the quantum444

harmonic oscillator V (x) = mωx2/2 and its ΨDO reduces to the first-order derivative,445

(5.1)
∂

∂t
f(x, k, t) +

~k
m
∇xf(x, k, t)− 1

~
∇xV (x)∇kf(x, k, t) = 0.446

The exact solution can be solved by f(x, k, t) = f(x(t), k(t), 0), where (x(t), k(t)) obey447

a (reverse-time) Hamiltonian system ∂x/∂t = −~k/m, ∂k/∂t = mωx/~, and reads448

x(t) = cos
(√
ωt
)
x(0)− ~

m
√
ω

sin
(√
ωt
)
k(0),

k(t) =
m
√
ω

~
sin
(√
ωt
)
x(0) + cos

(√
ωt
)
k(0).

(5.2)449

Example 2. Consider a quantum harmonic oscillator V (x) = mωx2/2 and an450

initial Gaussian wavepacket f0(x, k) = π−1e−
1
2 (x−1)2−2k2 . We choose ω = (π/5)2 so451

that the wavepacket returns back to the initial state at the final time T = 10.452

The computational domain is X × K = [−12, 12] × [−6.4, 6.4], which is evenly453

decomposed into 4 patches for MPI implementation. The natural boundary condition454

is adopted at two ends so that there is a slight loss of mass (about 10−13) up to455

T = 10, while the Neumann boundary condition may lead to artificial wave reflection456

and exhibits a rapid growth of errors when the wavepacket moves close to the boundary457

(see Section 2.4 of our supplementary material [38]).458

Since we mainly focus on the convergence with respect to ∆x and nnb, several459

groups of simulations under ∆x = 0.025, 0.05, 0.1, 0.2, 0.3 and nnb = 10, 15, 20, 30460

are performed, where other parameters are set as: the time step τ = 0.00002 and461

∆k = 0.025 to achieve spectrally accurate approximation to ΨDO. The convergence462

with respect to ∆x and the mass conservation under different nnb are given in Figure463

4. From the results, we can make the following observations.464

Convergence with respect to ∆x: The convergence rate is plotted in Figure465

4(e). LPC1 can achieve spatial fourth order convergence when nnb ≥ 15, according466

with the theoretical value of the cubic spline interpolation. While a reduction in467

convergence is observed when nnb = 10 because of the truncated stencils in Eq. (3.3).468

Influence of PMBCs: From Figures 4(a) and 4(b), one can see that nnb = 10469

only bring in additional errors about 10−5. Such errors seem to be negligible when470

nnb ≥ 15, which coincides with the observations made in [26]. However, the truncation471

of stencils indeed has a great influence on the mass conservation as seen in Figure472

4(f), where εmass is about 10−6 when nnb = 10 or 10−9 when nnb = 15. Fortunately,473

its influence on total mass can be nearly eliminated when nnb ≥ 20.474

Numerical stability: The first-order derivative in Eq. (5.1) brings in strong475

numerical stiffness and puts a severe restriction on the time step τ in CHASM. Nev-476

ertheless, we have observed in [38] that LPC1 is more stable than the splitting scheme,477
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(a) ε∞(t) under nnb = 10 and different ∆x.
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(e) Convergence with respect to ∆x.
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Fig. 4. 2-D quantum harmonic oscillator: The convergence and mass conservation of
LPC1. LPC1 can achieve fourth-order convergence in ∆x. PMBC brings in smaller errors
and causes a slight loss of mass, but fortunately they are almost eliminated when nnb ≥ 20.

which has also been pointed out in [35], as well as the multi-stage non-splitting scheme.478

Actually, LPC1 turns out to be stable up to T = 20 under a much larger time step479

τ = 0.0005, while the Strang operator splitting becomes unstable under such setting480

(see Section 4.1 of our supplementary material [38]).481

5.2. Hydrogen Wigner function: 1s state. We turn to evaluate the perfor-482

mance of CHASM in 6-D problems. The Hydrogen Wigner function is very useful483

for dynamical testing as it is the stationary solution of the Wigner equation. For484

the 1s orbital, φ1s(x) = 1
2
√

2π2
exp(−|x|), the Wigner function is given by Eq. (2.1)485

with ρ(x1,x2) = φ1s(x1)φ∗1s(x2). Although it is too complicated to obtain an ex-486

plicit formula, the Hydrogen Wigner function of 1s state can be highly accurately487
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approximated by the discrete Fourier transform of Eq. (2.1): For kζ = ζ∆k,488

f1s(x,kζ) ≈

Ny
2 −1∑

η1=−Ny2

Ny
2 −1∑

η2=−Ny2

Ny
2 −1∑

η3=−Ny2

φ1s(x−
η∆y

2
)φ∗1s(x+

η∆y

2
)e−i(ζ·η)∆k∆y(∆y)3.489

By taking ∆y = 2π
Nk∆k , it can be realized by FFT (we use Ny = 128). The spatial490

density of 1s orbital on (x1-x2) plane and the reduced Wigner function W1(x, k)491

projected on (x1-k1) plane are visualized in Figures 5(a) and 5(b), respectively.
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(d) Wnum
1 −W ref

1 at t = 5a.u. (Nk = 64).

Fig. 5. The Hydrogen 1s Wigner function: A visualization of the Hydrogen 1s orbital,
the reduced Hydrogen 1s Wigner function W1(x, k) and the numerical errors W num

1 −W ref
1

at t = 5a.u. Small errors are observed near the k-boundary as f1s(x,k) has a heavy tail in
k-space, which have influences on the convergence rate of TKM and mass conservation.

492
The storage of 6-D grid mesh requires a tremendous amount of computer memory493

and hinders the benchmarks under very fine grid mesh. To alleviate such problem,494

we have to adopt SINGLE precision to save halves of memory, which is adequate495

for cubic spline interpolations, but still adopt DOUBLE precision for TKM. The496

computational domain is X × K = [−9, 9]3 × [−6.4, 6.4]3 with a fixed spatial spacing497

∆x = 0.3 (Nx = 61), where the accuracy of spline interpolation has been already498

tested in 2-D example. The natural boundary condition is again adopted at two ends.499

We mainly investigate the convergence of TKM with respect to Nk by five groups:500

Nk = 8, 16, 32, 64, 80 (∆k = 1.6, 0.8, 0.4, 0.2, 0.16). The domain is evenly divided into501

4 × 4 × 4 patches and distributed by 64 processors, and each processor provides 4502

threads for shared-memory parallelization using the OpenMP library. Other param-503

eters are set as: the stencil length in PMBC is nnb = 15 and time step is τ = 0.025.504

The numerical convergence and the deviation in total mass of LPC1 are presented505

in Figure 6, and numerical errors for reduced Wigner function W num
1 −W ref

1 under506
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Nk = 64 are visualized in Figure 5(d), respectively. From the results, we can make507

the following observations.508
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Fig. 6. The Hydorgen 1s Wigner function: The performance of TKM under different ∆k,
with ∆x = 0.3. The convergence of TKM is verified, albeit with lower convergence rate due
to errors caused by the spatial spline interpolation and the heavy tail of f1s(x,k) is k-space.

Convergence with respect to ∆k: The convergence of TKM is clearly verified509

in Figure 6(c), albeit its convergence rate is slower than expectation due to the mixture510

of various error terms. Nonetheless, CHASM can still achieve ε∞(5) = 1.11 × 10−3511

and ε2(5) = 4.706×10−3 under 613×643 grid mesh, where max(|f1s(x,k)|) = 1/π3 ≈512

3.23 × 10−2. These metrics further reduce to ε∞(5) = 9.48 × 10−4 and ε2(5) =513

4.02 × 10−3 when Nk = 80. We have also tested the Strang splitting scheme for514

Nk = 64 and obtained ε∞(5) = 2.0×10−3, ε2(5) = 7.0×10−3, which are significantly515

larger than the results of LPC1 (see Section 4.2 of our supplementary material [38]).516

Deviation of total mass: A slight deviation of the total mass is observed due517

to the break of Eq. (2.5). From Figure 6(d), one can see that εmass(5) of LPC1 is518

0.66%, while that of the Strang splitting is 1.35% (see Section 4.2 of [38]).519

Two reasons may explain the above observations. On one hand, f1s(x,k) exhibits520

a heavy tail in k-space. In Figure 5(c), the reduced Wigner function W1(x,k) is about521

10−3 near k-boundary, indicating that f1s(x,k) is not truly compactly supported in522

[−6.4, 6.4]3. Thus the overlap with the periodic image may produce small oscillations523

near the k-boundary, which is also visualized in Figure 5(d). On the other hand, the524

solution might also be contaminated by the interpolation errors in the spatial space,525

which are about 10−3 for ∆x = 0.3 and T = 5a.u. as presented in Figure 4(b).526

5.3. Electron dynamics interacting with one proton. With above prepa-527

rations, we can simulate several typical quantum systems and try to reveal the proton-528

electron coupling and the uncertainty principle under the Wigner function represen-529
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(a) W1(x, k, t) (left) and W2(x, k, t) (right) at t = 1a.u.
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(c) W1(x, k, t) (left) and W2(x, k, t) (right) at t = 2a.u.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(d) P (x1, x2, t) at t = 1a.u.
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(e) W1(x, k, t) (left) and W2(x, k, t) (right) at t = 4a.u.
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(f) P (x1, x2, t) at t = 2a.u.
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(g) W1(x, k, t) (left) and W2(x, k, t) (right) at t = 8a.u.
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(h) P (x1, x2, t) at t = 5a.u.
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(i) W1(x, k, t) (left) and W2(x, k, t) (right) at t = 12a.u.
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Fig. 7. Electron-proton interaction: Snapshots of the reduced Wigner functions on (x1-
k1) plane (left) and on (x2-k2) plane (middle), the spatial marginal distribution (right) and
the averaged position and momentum.

tation. The following example is motivated from the strong-field ionization process530

studied in [4, 5]. The computational domain [−9, 9]3 × [−4.8, 4.8]3 under a 813 × 643531

uniform grid is decomposed into 43 patches with nnb = 15. The time step is τ = 0.025.532

Example 3. Consider a electron interacting with a proton fixed at (0, 0, 0). The533

initial condition is f0(x,k) = π−3e−
1
2 ((x1−1)2+x2

2+x2
3)−2(k21+k22+k23), where the Gaussian534

wavepacket describes the coherent state.535
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Spatial unharmonic oscillation: As presented in the third column of Figure 7,536

the electron wavepacket is soon attracted by the proton and then oscillates near537

the origin, and it presents an evident unharmonic oscillation pattern in the spatial538

space under the Coulomb interaction. We record the average position 〈x1(t)〉 and539

momentum 〈k1(t)〉 in Figure 7(j) and indeed observe that the amplitude of oscillations540

damp away in time, which is distinct from the harmonic trajectories.541

Uncertainty principle: The time evolutions of W1(x, k, t) and W2(x, k, t) are542

plotted in the first two columns of Figure 7. Since the electron initially deviates543

from the origin in x1-direction, W1(x, k, t) exhibits a highly asymmetric pattern and544

becomes more and more oscillating. The uncertainty principle is visualized by the545

negative parts of the Wigner function, which seem to be concentrated on the region546

opposite to the moving direction. By contrast, W2(x, k, t) is always symmetric, and547

only small negative components are observed.548

5.4. H+
2 system: Electron dynamics interacting with two protons. A549

more challenging problem is to put an electron in the delocalized potential produced550

by two protons, motivated from the Hydrogen tunneling phenomenon [33]. The com-551

putational domain is [−9, 9]3× [−4.8, 4.8]3 with a 613×643 uniform grid mesh, which552

is decomposed into 4× 4× 4 patches with nnb = 15.553

Example 4. Suppose there are two protons with fixed position x−A = (−R, 0, 0)554

and x+
A = (R, 0, 0), R = 0.614161a.u. (0.325 Angstrom), so that the potential is555

V (x) = − 1
|x−x−A |

− 1
|x−x+

A|
. The initial Gaussian wavepacket is set as f0(x,k) =556

π−3e−
1
2 (x2

1+x2
2+x2

3)−2(k21+k22+k23).557

Spatial concentration: The time evolutions of P (x1, x2, t) are plotted in Figure558

8. In particular, Figure 8(f) gives the projection of P (x1, x2, t) onto x1-direction,559

i.e.,
∫
R P (x1, x2, t)dx2. It is seen that the electron is almost trapped in the field560

produced by two delocalized protons, and the wavepacket at t = 1a.u. is evidently561

more concentrated near the origin than the initial Gaussian. The peak of spatial562

marginal distribution reaches the maximum at t = 2a.u. Afterward, it gradually563

descends until 8a.u., and begins to oscillate around a stable level. Clearly, the spatial564

marginal distribution has a fatter tail compared with the initial Gaussian profile.565

Quantum tunneling: In fact, the spatial concentration seems to be an outcome566

of the quantum uncertainty and tunneling. From the reduced Wigner functions in567

Figure 8, one can see (1) the electron has certain probability to escape from the at-568

tractive potentials by two protons; (2) The quantum Coulomb interactions produce569

some negative regions, indicating that the electron with certain momentum is forbid-570

den to escape; (3) The concentration of P (x1, x2, t) seems to be related to the negative571

parts of the Wigner function as they “squeeze” the Gaussian wavepacket inside and572

force the electron to occupy the centre region with larger probability, while the heavy573

tail corresponds to the wavepacket that escapes from the attractive potentials.574

5.5. Implementation and parallelization. Finally, we provide details of par-575

allel implementations in Table 2, including the memory requirement for storing a 6-D576

tensor in single precision, the computational time and corresponding platform.577

All the simulations are performed via our own Fortran implementation, with a578

mixture of MPI and OpenMP library to realize the distributed and shared-memory579

parallelization, respectively, and the domain is decomposed to 43 patches (23 patches580

for the group with mesh size 413 × 323). It notes that the simulations under the581

mesh size 413 × 323 or 613 × 323 can be performed by a single computer without582

any difficulty in data storage, while other groups have to be performed on multiple583
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(a) W1(x, k, t) (left), W2(x, k, t) (middle) and P (x1, x2, t) (right) at t = 1a.u.
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(b) W1(x, k, t) (left), W2(x, k, t) (middle) and P (x1, x2, t) (right) at t = 2a.u.
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(c) W1(x, k, t) (left), W2(x, k, t) (middle) and P (x1, x2, t) (right) at t = 4a.u.
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(d) W1(x, k, t) (left), W2(x, k, t) (middle) and P (x1, x2, t) (right) at t = 8a.u.
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(e) W1(x, k) (left) and W2(x, k) (right) at t = 12a.u.
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(f) Projection on x1 direction.

Fig. 8. H+
2 system: Snapshots of the reduced Wigner functions on (x1-k1) plane (left)

and on (x2-k2) plane (middle), and the spatial marginal distribution (right).

computers due to the severe limitation of memory.584

We have also tested the scalability of CHASM up to 1000 nodes and 16 threads585

per task (16000 cores in total) by simulating one-step Euler integration under the grid586

mesh 613 × 163. The speedup ratio is presented in Figure 9. CHASM achieves the587

speedup ratio at least 53.84% under 10×10×10 decomposition, where the calculation588

of ΨDO occupies most of computational time. Since the nonlocal calculation turns out589

to be the bottleneck in complexity, which scales as O(N3
k logNk) according to Table590
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Table 2
The memory requirement of storing a 6-D tensor of size N3

x × N3
k in single precision,

the computational time of LPC1 scheme up to T = 5a.u. (τ = 0.025a.u., 200 steps) and the
corresponding running platform.

N3
x ×N3

k Memory High-performance Computing Platform Cores Time(h)
413 × 323 8.41GB AMD 5950X (3.40GHz, 16C32T), 128GB Memory 32 13.27
613 × 323 27.71GB AMD 2990WX (3.00GHz, 32C64T), 256GB Memory 64 66.16
613 × 643 274.88GB E5-2697A v4 (2.60GHz,16C32T), 256GB Memory ×8 256 66.79
613 × 803 432.93GB E5-2697A v4 (2.60GHz,16C32T), 256GB Memory ×8 256 88.67
813 × 643 557.26GB E5-2680 v4 (2.40GHz,14C28T), 256GB Memory ×16 448 66.13

1, it is expected that CHASM can achieve higher speedup ratio as Nk increases.591

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
1

10
2

10
3

0 200 400 600 800 1000

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Fig. 9. Parallelization: CHASM achieves speedup ratio at least 53.84% with the grid
mesh 613 × 163 distributed in 1000 nodes, which is further boosted when larger Nk is used.

6. Conclusion and discussion. Numerical algorithms for high-dimensional592

Wigner equation have drawn a growing attention, but the lack of reliable reference593

solutions poses a major bottleneck to their design and evaluations. For 6-D Wigner-594

Coulomb dynamics, we propose a massively parallel scheme, termed CHAracteristic-595

Spectral-Mixed (CHASM). It exploits the local spline interpolation and the truncated596

kernel method to tackle the local spatial advection and nonlocal pseudodifferential597

operator with weakly singular symbol, respectively. CHASM may provide accurate598

references for a relatively new branch of particle-based stochastic Wigner simulations599

[12–14], which may be potentially extended to even realistic many-body quantum600

systems (D = 12) and further overcome the curse of dimensionality.601

It deserves to mention that the proposed scheme can be straightforwardly applied602

to other 6-D problems, including the Vlasov equation [27, 36, 37] and the Boltzmann603

equation [34] due to their strong similarities. In addition, several issues, including the604

generalization of CHASM to the fully nonlinear Wigner-Poission-Boltzmann equation605

and the GPU implementation, will be discussed in our future work.606
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