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Abstract Performance evaluations on the deterministic algorithms for 6-D prob-
lems are rarely found in literatures except some recent advances in the Vlasov and
Boltzmann community [Dimarco et al. (2018), Kormann et al. (2019)], due to the
extremely high complexity. Thus a detailed comparison among various techniques
shall be useful to the researchers in the related fields. We try to make a thorough
evaluation on a parallel CHAracteristic-Spectral-Mixed (CHASM) scheme to sup-
port its usage. CHASM utilizes the cubic B-spline expansion in the spatial space
and spectral expansion in the momentum space, which many potentially overcome
the computational burden in solving classical and quantum kinetic equations in
6-D phase space. Our purpose is three-pronged. First, we would like show that by
imposing some effective Hermite boundary conditions, the local cubic spline can
approximate to the global one as accurately as possible. Second, we will illustrate
the necessity of adopting the truncated kernel method in calculating the pseudod-
ifferential operator with a singular symbol, since the widely used pseudo-spectral
method [Ringhofer (1990)] might fail to properly tackle the singularity. Finally,
we make a comparison among non-splitting Lawson schemes and Strang opera-
tor splitting. Our numerical results demonstrate the advantage of the one-stage
Lawson predictor-corrector scheme over multi-stage ones as well as the splitting
scheme in both accuracy and stability.
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1 Introduction to the characteristic method

The characteristic methods, especially those within the semi-Lagrangian frame-
work, have proved very successful in solving kinetic equations and other nonlocal
problems (4; 5; 8–10; 15). In order to make the materials self-contained, we will
briefly review their basic settings.

1.1 The Lawson integrators for partial integro-differential equations

Consider the model problem

∂

∂t
y(x, t) = Ly(x, t) +Ny(x, t), (1)

where L is the linear local operator and N is the nonlocal operator. Under the
Lawson transformation v(x, t) = e(tn−1−t)Ly(x, t), it yields that

∂

∂t
v(x, t) = e(tn−1−t)LN (e(tn−1−t)Lv(x, t)). (2)

Applying a q-step Adams method and transforming back to original variable yields
the Lawson-Adams method,

yn(x) = eτLyn−1(x) +

q∑
k=0

βkekτLNyn−k(x), (3)

where τ = tn − tn−1 is the time stepsize, and yn(x) denotes the solution at n-th
step.

Specifically, for the partial integro-differential equation with a nonlocal opera-
tor ΘV [f ], e.g., the Boltzmann equation and the Wigner equation, of the form:

∂

∂t
f(x,k, t) +

~k
m
· ∇xf(x,k, t) = ΘV [f ](x,k, t). (4)

The commonly used Lawson schemes are collected as follows.
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(1) One-stage Lawson predictor-corrector scheme (LPC-1)

P : f̃n+1(x,k) = fn(Aτ (x,k)) + τΘV [fn](Aτ (x,k)),

C : fn+1(x,k) = fn(Aτ (x,k)) +
τ

2
ΘV [f̃n+1](x,k) +

τ

2
ΘV [fn](Aτ (x,k)).

(2) Two-stage Lawson-Adams predictor-corrector scheme (LAPC-2):

P : f̃n+1(x,k) =fn(Aτ (x,k)) +
3τ

2
ΘV [fn](Aτ (x,k))

− τ

2
ΘV [fn−1](A2τ (x,k)),

C : fn+1(x,k) =fn(Aτ (x,k)) +
5τ

12
ΘV [f̃n+1](x,k) +

8τ

12
ΘV [fn](Aτ (x,k))

− τ

12
ΘV [fn−1](A2τ (x,k)).

(3) Three-stage Lawson-Adams predictor-corrector scheme (LAPC-3):

P : f̃n+1(x,k) =fnAτ (x,k)) +
23τ

12
ΘV [fn](Aτ (x,k))

− 16τ

12
ΘV [fn−1](A2τ (x,k)) +

5τ

12
ΘV [fn−2](A3τ (x,k)),

C : fn+1(x,k) =fnAτ (x,k)) +
9τ

24
ΘV [f̃n+1](x,k) +

19τ

24
ΘV [fn](Aτ (x,k))

− 5τ

24
ΘV [fn−1](A2τ (x,k)) +

τ

24
ΘV [fn−2](A3τ (x,k)).

Here we use the notation Aτ (x,k) = (x− ~k
m τ,k). The Lawson scheme exploits the

exact advection along the characteristic line, i.e., the semigroup e−
~τ
m
k·∇xf(x,k, t) =

f(Aτ (x,k), t − τ). The convergence order of q-stage Lawson predictor-corrector
scheme is between q and q+ 1 as it can be regarded as an implicit integrator with
incomplete iteration. In practice, the one-step predictor-corrector scheme LPC-1 is
used to obtain missing starting points for multistep schemes LAPC-2 and LAPC-3.

Apart from the non-splitting scheme, another commonly used scheme is the
operator splitting (OS). Take the Strang splitting as an example.

Half-step advection : fn+1/2(x,k) = fn(Aτ/2(x,k)),

Full-step of ΨDO : f̃n+1/2(x,k) = fn+1/2(x,k) + τΘV [fn+1/2](x,k),

Half-step advection : fn+1(x,k) = f̃n+1/2(Aτ/2(x,k)).

The Strang splitting adopted here is a first-order scheme overall as one of the
subproblems is integrated by the backward Euler method.
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1.2 Cubic spline interpolation

The standard way to evaluate fn(Aτ (x,k)) and ΘV [fn](Aτ (x,k)) on the
shifted grid is realized by interpolation via a specified basis expansion of fn. Typ-
ical choices include the spline wavelets (3; 4), the Fourier pseudo-spectral basis
and the Chebyshev polynomials (1). Regarding the fact that the spatial advection
is essentially local, we only consider the cubic B-spline as it is a local wavelet
basis with low numerical dissipation, and the cost scales as O(Nd

x ) with d the
dimensionality (4).

Now we focus on the unidimensional uniform setting as the multidimensional
spline can be constructed by its tensor product. Suppose the computational domain
is [x0, xN ] containing N + 1 grid points with uniform spacing h = xN−x0

N . The
projection of ϕ(x) onto the cubic spline basis is given by

ϕ(x) ≈ s(x) =

N+1∑
ν=−1

ηνBν(x) subject to ϕ(xi) = s(xi), i = 0, . . . , N. (5)

Bν is the cubic B-spline with compact support over four grid points,

Bν(x) =



(x− xν−2)3

6h3
, x ∈ [xν−2, xν−1],

− (x− xν−1)3

2h3
+

(x− xν−1)2

2h2
+

(x− xν−1)

2h
+

1

6
, x ∈ [xν−1, xν ],

− (xν+1 − x)3

2h3
+

(xν+1 − x)2

2h2
+

(xν+1 − x)

2h
+

1

6
, x ∈ [xν , xν+1],

(xν+2 − x)3

6h3
, x ∈ [xν+1, xν+2],

0, otherwise,
(6)

implying that Bν−1, Bν , Bν+1, Bν+2 overlap a grid interval (xν , xν+1) (11).
Now it requires to solve the N + 3 coefficients η = (η−1, . . . , ηN+1). Since only

Bi±1(xi) = 1
6 and Bi(xi) = 2

3 , substituting it into Eq. (5) yields N + 1 equations
for N + 3 variables,

ϕ(xi) =
1

6
ηi−1 +

2

3
ηi +

1

6
ηi+1, 0 ≤ i ≤ N. (7)

Two additional equations are needed to determine the unique solution of η,
which are given by a specified boundary condition at both ends of the interval.
For instance, consider the Hermite boundary condition (also termed the clamped
spline) (3),

s′(x0) = φL, s′(xN ) = φR, (8)

where φL and φR are parameters to be determined. In particular, when φL =
φR = 0, it reduces to the Neumann boundary condition on both sides. Since

s′(xi) = − 1

2h
ηi−1 +

1

2h
ηi+1, i = 0, . . . , N, (9)

it is equivalent to add two constraints,

φL = − 1

2h
η−1 +

1

2h
η1, φR = − 1

2h
ηN−1 +

1

2h
ηN+1. (10)



Performance evaluations on CHASM 5

Thus all the coefficients can be obtained straightforwardly by solving the equation

A(η−1, . . . , ηN+1)T = (φL, ϕ(x0), . . . , ϕ(xN ), φR)T . (11)

Note that (N+3)×(N+3) coefficient matrix A has an explicit LU decomposition,

A =
1

6



−3/h 0 3/h 0 · · · 0

1 4 1 0
...

0 1 4 1
...

...
...

...
...

. . .
...

... 0 1 4 1
0 0 0 −3/h 0 3/h


. (12)

where

L =



1 0 0 · · · · · · 0

−h/3 1 0
. . .

...

0 l1 1
. . .

...

0 0 l2
. . .

...
...

... lN 1 0

0 0 · · · −3lN
h

3lN+1

h 1


(13)

and

U =
1

6



−3/h 0 3/h 0 · · · · · · 0

0 d1 2 0
. . .

...

0 0 d2 1
. . .

...

0 0 0 d3
. . .

...
...

... 0 dN+1 0
0 0 · · · 0 0 3dN+2/h


, (14)

with

d1 = 4, l1 = 1/4, d2 = 4− 2l1 = 7/2,

li = 1/di, di+1 = 4− li, i = 2, . . . , N + 1,

lN+1 = 1/(dNdN+1), dN+2 = 1− lN+1.

(15)

The above scheme can achieve fourth order convergence in spatial spacing h and
conserves the total mass. Besides, the time step in the semi-Lagrangian method
is usually not restricted by the CFL condition, that is, C = ~max |k|τ/h > 1 is
allowed.
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2 Parallel characteristic method

For a 6-D problem, the foremost problem is the storage of huge 6-D tensors as
the memory to store a 1013 × 643 grid is 1.08TB in single precision, which is still
prohibitive for modern computers.

Fortunately, the characteristic method can be realized in a distributed manner
as pointed out in several pioneering works (4; 11). Without loss of generality, we
divide N + 1 grid points on a line into p uniform parts, with M = N/p,

x0 < x1 < · · · < xM−1

the 1st processor

< xM
shared

< · · · < x(p−1)M

shared

< x(p−1)M+1 < · · · < xpM

p-th processor

,

where the l-th processor only manipulates Xl with Xl = (x(l−1)M+1, . . . , xlM ),
l = 1, . . . , p. The grid points xM , x2M , . . . , x(p−1)M are shared by the adjacent
patches. Our target is to make

η(l) = (η
(l)
−1, . . . , η

(l)
M+1) ≈ (η−1+(l−1)M , . . . , η(l−1)M+M+1), l = 1, . . . , p, (16)

say, the local spline coefficients η(l) for l-th piece should approximate to those in
global B-spline as accurately as possible.

2.1 Effective Hermite boundary condition based on finite difference stencils

In order to solve η(l) efficiently, Crouseilles, Latu and Sonnendrücker suggested
to impose an effective Hermite boundary condition on the shared grid points (CLS-
HBC for short) (3; 4) .

ϕ′(xlM ) = s′(xlM ), l = 1, . . . , p, (17)

so that it needs to solve

ϕ′(xlM ) = − 1

2h
η
(l)
M−1 +

1

2h
η
(l)
M+1 = − 1

2h
η
(l+1)
−1 +

1

2h
η
(l+1)
1 . (18)

The problem is that the derivates ϕ′(xlM ) on the adjacent points are actually
unknown, so that they have to be interpolated by a finite difference stencil. The
authors suggest to use the recursive relation from the spline transform matrix (12)
and three-term relation ϕ(xi) = 1

6ηi−1 + 2
3ηi + 1

6ηi+1, 0 ≤ i ≤ N .
Following (3) and taking i = lM , it starts from

s′(xi) =− 1

2h
ηi−1 +

1

2h
ηi+1

=− 1

2h

(
3

2
ϕ(xi−1)− 1

4
ηi−2 −

1

4
ηi

)
+

1

2h

(
3

2
ϕ(xi+1)− 1

4
ηi −

1

4
ηi+2

)
=

3

4h
(ϕ(xi+1)− ϕ(xi−1)) +

1

8h
(ηi−2 − ηi+2),

(19)

so that it arrives at the recursive relation,

s′(xi) =
3

4h
(ϕ(xi−1) + ϕ(xi+1))− 1

4
(s′(xi−1)− s′(xi+1)), (20)
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By further replacing s′(xi−1) and s′(xi+1) by Eq. (20), it arrives at a longer
expansion

s′(xi) =
6

7h
(ϕ(xi+1) + ϕ(xi−1))− 3

14h
(ϕ(xi+2) + ϕ(xi−2))

+
1

14
(s′(xi+2)− s′(xi−2)).

(21)

It obtains the final expansion with α = 1− 2/142,

(
α− 2

α142

)
s′(xi) =

8∑
j=−8

ωjϕ(xi+j) +
1

α142
(s′(xi+8) + s′(xi−8)), (22)

associated with the fourth-order finite difference approximation

s′(xi+8) ≈ −ϕ(xi+10) + 8ϕ(xi+9)− 8ϕ(xi+7) + ϕ(xi+6)

12h
. (23)

To sum up, it arrives at the formula

s′(xi) =

−1∑
j=−10

ω̃−j ϕ(xi+j) +
10∑
j=1

ω̃+
j ϕ(xi+j), (24)

where the coefficients ω̃−j are collected in Table 1 and ω̃+
j = −ω̃−j .

Table 1 Coefficients for the approximation of the derivatives (4).

j −10 −9 −8 −7 −6
ω̃j 0.2214309755E-5 −1.771447804E-5 7.971515119E-5 −3.011461267E-4 1.113797807E-3
j −5 −4 −3 −2 −1
ω̃j −4.145187862E-3 0.01546473933 −0.05771376946 0.2153903385 −0.8038475846

At each step,
∑−1
j=−10 ω̃

−
j ϕ(xi+j) and

∑10
j=1 ω̃

+
j ϕ(xi+j) can be assembled by

left and right processor independently, and then data is exchanged only in adjacent
processors to merge the effective boundary condition. The remaining task to solve
algebraic equations in each processor independently

A(l)η(l) = (φ
(l)
L , ϕ(x(l−1)M ), . . . , ϕ(xlM ), φ

(l)
R )T , (25)

where A(l) is a (M + 3)× (M + 3) matrix with the form like Eq. (12), and

φ
(l)
R = φ

(l+1)
L ≈

−1∑
j=−10

ω̃−j ϕ(xlM+j) +
10∑
j=1

ω̃+
j ϕ(xlM+j). (26)
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2.2 Perfectly matched boundary condition (PMBC)

We suggest to adopt another effective boundary condition, termed the perfectly
matched boundary condition (PMBC), based on a key observation made in (11).
Specifically, we start from the exact solution of η, with (bij) = A−1 of size (N +
3)× (N + 3).

For the sake of convenience, the subindex of (bij) starts from −1 and ends at
N + 1 = pM + 1. The solution of Eq. (11) reads that

ηi = biiϕ(xi) +

i−1∑
j=−1

bijϕ(xj) +

pM+1∑
j=i+1

bijϕ(xj), i = −1, . . . , pM + 1. (27)

We can make a truncation for |i − j| ≥ nnb as the off-diagonal elements exhibit
exponential decay away from the main diagonal,

ηi ≈ biiϕ(xi)+

i−1∑
j=i−nnb+1

bijϕ(xj)+

i+nnb−1∑
j=i+1

bijϕ(xj), i = −1, . . . , pM+1. (28)

Using the truncated stencils (28),

ηlM−1 ≈
(lM−1)+nnb−1∑
j=(lM−1)−nnb+1

blM−1,jϕ(xj) =

nnb−2∑
j=−nnb

blM−1,lM+jϕ(xlM+j),

ηlM+1 ≈
(lM+1)+nnb−1∑
j=(lM+1)−nnb+1

blM+1,jϕ(xj) =

nnb∑
j=−nnb+2

blM+1,lM+jϕ(xlM+j).

By further adding four more terms to complete the summations from −nnb to nnb,
it yields that

− 1

2h
ηlM−1 +

1

2h
ηlM+1 ≈

nnb∑
j=−nnb

(
− 1

2h
blM−1,lM+j +

1

2h
blM+1,lM+j

)
ϕ(xlM+j)

=

−1∑
j=−nnb

(
− 1

2h
blM−1,lM+j +

1

2h
blM+1,lM+j

)
ϕ(xlM+j)

stored in left processor

+

nnb∑
j=1

(
− 1

2h
blM−1,lM+j +

1

2h
blM+1,lM+j

)
ϕ(xlM+j)

stored in right processor

+

(
− 1

2h
blM−1,lM +

1

2h
blM+1,lM

)
ϕ(xlM ).

shared by adjacent two processors

Thus it arrives at the formulation of PMBC

φ
(l)
R = φ

(l+1)
L ≈ 1

2
c0,lϕ(xlM ) +

nnb∑
j=1

c−j,lϕ(xlM−j)

stored in left processor

+
1

2
c0,lϕ(xlM ) +

nnb∑
j=1

c+j,lϕ(xlM+j)

stored in right processor

,
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where c0,l = − blM−1,lM

2h +
blM+1,lM

2h and

c+j,l = −blM−1,lM+j

2h
+
blM+1,lM+j

2h
, c−j,l = −blM−1,lM−j

2h
+
blM+1,lM−j

2h
. (29)

It deserves to mention that other spline boundary conditions can also be repre-
sented by PMBC, following the same idea in Eq. (28). When the natural boundary
conditions are adopted,

1

h2
η−1 −

2

h2
η0 +

1

h2
η1 = 0,

1

h2
ηN−1 −

2

h2
ηN +

1

h2
ηN+1 = 0, (30)

the coefficient matrix is

Ã =
1

6



1/h2 −2/h2 1/h2 0 · · · 0

1 4 1 0
...

0 1 4 1
...

...
...

...
...

. . .
...

... 0 1 4 1
0 0 0 1/h2 −2/h2 1/h2


. (31)

Denote by (b̃ij) = Ã−1,−1 ≤ i, j ≤ N + 1. Equivalently, the equations ÃηT =

(0, ϕ(x0), . . . , ϕ(xN ), 0)T can be cast into AηT = (φ
(1)
L , ϕ(x0), . . . , ϕ(xN ), φ

(p)
R )T

since

η−1 ≈
nnb−2∑
j=−1

b̃−1,jϕ(xj), η1 ≈
nnb∑
j=−1

b̃1,jϕ(xj). (32)

By adding two terms and noting that ϕ(x−1) = 0, it yields that

φ
(1)
L =

η1 − η−1

2h
≈

nnb∑
j=0

c−j,0ϕ(xj), c−j,0 =
1

2h
(−b̃−1,j + b̃1,j). (33)

Similarly, for the other end, noting that ϕ(xN+1) = 0,

ηN−1 ≈
nnb−2∑
j=−1

b̃N−1,N−jϕ(xN−j), ηN+1 ≈
nnb∑
j=−1

b̃N+1,N−jϕ(xN−j), (34)

so that

φ
(p)
R =

ηN+1 − ηN−1

2h
≈

nnb∑
j=0

c+j,pϕ(xN−j), c+j,p =
1

2h
(−b̃N−1,N−j + b̃N+1,N−j).

(35)
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2.3 Comparison between two effective Hermite boundary conditions

It is shown that PMBC is more preferable than CLS-HBC in consideration of
numerical accuracy.

Example 1 (1-D spline) The test problem is

ϕ(x) = sin(x), x ∈ [0, 8], (36)

subject to
ϕ′(0) = 0, ϕ′(8) = 0. (37)

For parallel implementation, the spline is decomposed into 4 patches as given
in Figure 1, and each patch contains (N − 1)/4 + 1 grid points .

0 1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1 An illustration of cubic B-spline on four patches. The grid points xlM (l = 1, . . . , p)
are shared by adjacent processors. In principle, the splines on patches should approximate to
the global one as accurately as possible.

First, we adopt CLS-HBC and the results are shown in Figure 2. It is observed
that the errors of are concentrated at the junction points of adjacent patches.
Indeed, the accuracy is improved under more collocation points (or equivalently,
using smaller step size). The relative errors are less than 5% when N = 81.

By contrast, the results under PMBC are given in Figure 3. One can see that the
errors are significantly smaller. When N is fixed to be 161, we find that nnb = 12
can achieve relative error about 10−8 and nnb = 26 can achieve that about 10−16.

Example 2 (Free advection of a 2-D Gaussian wavepacket)
The second test problem is the free-advection of the Wigner function in 2-D

phase space:
∂

∂t
f(x, k, t) =

~k
m

∂

∂x
f(x, k, t), (38)

with

f(x, k, 0) =
1

π
exp

(
− x2

2a2
− 2a2(k − k0)2

)
. (39)

The exact solution reads that

f(x, k, t) =
1

π
exp

(
−

(x− ~kt
m )2

2a2
− 2a2(k − k0)2

)
. (40)

Here we take a = 1, ~ = m = 1, k0 = 0.5. The final time is tfin = 5 with time
step τ = 0.05.



Performance evaluations on CHASM 11
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(a) N = 81.
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(b) N = 161.
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0

0.002

0.004
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Fig. 2 Spline coefficients (left) and absolute errors (right) under CLS-HBC. Large errors are
observed at the junction points.

To measure the numerical error, we adopt the l∞-error as the metric

ε∞(t) = max
(x,k)∈X×K

|fnum(x, k, t)− fexact(x, k, t)|, (41)

where fnum and fexact denote the solutions produced by the spline interpolation
and exact one, respectively. We make a comparison of two kinds of effective Her-
mite boundary conditions. When N = 81 and nnb = 10 are fixed, one can see in
Figure 5 that the performance of the local splines under PMBC are almost the
same as that of the serial spline, while the solutions under CLS-HBC exhibit small
oscillations around the junction regions. Such trend is also observed when further
increasing N to 161. As presented in Figure 6, the l∞-error ε∞(5) decreases from
4.86× 10−4 to 6.68× 10−5 and the convergence order is 3 (see Figure 4).
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(b) nnb = 10.
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(c) nnb = 20.

Fig. 3 Spline coefficients (left) and absolute errors (right) under PMBC (nnb = 10). The
errors at the junction points are dramatically suppressed.
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Fig. 4 The time evolution of ε∞(t) under the parallel spline reconstruction and different
spatial stepsizes. It perfectly matches the theoretical global convergence order 3.

2.4 The influence of different spline boundary conditions

Now it turns to investigate the influence of different boundary conditions on
the global spline. Again, we simulate the free advection in Example 2 until tfin =
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(a) Serial cubic B-spline interpolation.
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(b) Parallel cubic B-spline interpolation with PMBC (nnb = 10).
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(c) Parallel cubic B-spline interpolation with CLS-HBC.

Fig. 5 A comparison of 2-D free advection: fnum(x, k, t)−fexact(x, k, t) at t = 5 (left) and the
time evolution of ε∞(t) (right) under N = 81. When PMBC is adopted, it produces almost the
same results as that of the serial implementation. By contrast, when the CLS-HBC is adopted,
small oscillations are observed at the junction points.

10 under either the natural boundary condition (30) or the Neumann boundary
condition f ′(x0) = 0 and f ′(xN ) = 0 imposed on the global spline.

As seen in Figure 7, when the Neumann boundary condition is adopted, the
wavepacket will be reflected back when it touches the boundary and leads to a
rapid accumulation of errors. By contrast, under the natural boundary condition,
the reflection of wavepacket is evidently suppressed and growth rate of errors is
dramatically smaller.

The numerical evidence indicates that it is more appropriate to impose the
natural cubic spline to let wavepackets leave the domain without reflecting back.
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(a) Serial cubic B-spline interpolation.
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(b) Parallel cubic B-spline interpolation with PMBC (nnb = 10).

-10 -5 0 5 10

-3

-2

-1

0

1

2

3

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(c) Parallel cubic B-spline interpolation with CLS-HBC.

Fig. 6 A comparison of 2-D free advection: fnum(x, k, t) − fexact(x, k, t) at t = 5 (left) and
the time evolution of ε∞(t) (right) under N = 161. Numerical results are further improved
under smaller spatial spacing.

3 Comparison between TKM and pseudo-spectral method

The pseudo-spectral method (PSM for brevity) is a typical way to approximate
the ΨDO (6; 13)

ΘV [f ](x,k, t) =
1

i~(2π)3

∫∫
R6

e−i(k−k′)·yDV (x,y, t)f(x,k′, t)dydk′ (42)

with DV (x,y, t) = V (x+ y
2 )− V (x− y

2 ).
Suppose the Wigner function f(x,k, t) decays outside the finite domain X ×

[−Lk, Lk]3, then one can impose artificial periodic boundary condition in k-space
and use PSM (or the Poisson summation formula)

f(x,k, t) ≈
∑
n∈Z3

f̂n(x, t)e
2πin·k
2Lk . (43)
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(a) Evolution of errors. (left: Neumann boundary, right: natural boundary)
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(b) Difference at t = 3. (left: Neumann boundary, right: natural boundary)
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(c) Difference at t = 4. (left: Neumann boundary, right: natural boundary)
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(d) Difference at t = 10. (left: Neumann boundary, right: natural boundary)

Fig. 7 The free advection until t = 10 under the Neumann boundary condition (left) or
the natural boundary condition (right) for global cubic spline. Under the Neumann boundary
condition, the wave packet tends to be reflected back and leads to an evident accumulation
of errors near the boundary. By contrast, the reflection of wave packet can be significantly
suppressed under the natural boundary condition.

In addition, starting from the convolution representation of ΨDO, it yields that

ΘV [f ](x,k, t) ≈ 1

i~(2π)3

∫
R3

e−ik·yDV (x,y)
∑
n∈Z3

(∫
R3

f̂n(x, t)e
i( π
Lk
n−y)·k′

dk′
)

dy

=
1

i~(2π)3

∑
n∈Z3

f̂n(x, t)

∫
R3

e−ik·yDV (x,y)

(∫
R3

e
i( π
Lk
n−y)·k′

dk′
)

dy

=
1

i~
∑
n∈Z3

f̂n(x, t)

∫
R3

e−ik·yDV (x,y)δ(
πn

Lk
− y)dy

=
1

i~
∑
n∈Z3

f̂n(x, t)DV (x,
πn

Lk
)e
− πi
Lk
k·n

,
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where the third equality uses the Fourier completeness relation. By further trun-
cating n, we arrive at the approximation formula

ΘV [f ](x,k, t) ≈ 1

i~
∑
n∈I

f̂n(x, t)(V (x− πn

2Lk
)− V (x+

πn

Lk
))e
− πi

2Lk
k·n

, (44)

where the dual index set I is that

I := {(n1, n2, n3) ∈ Z3|nj = −Nk/2, . . . , Nk/2− 1}. (45)

However, we would like to report that PSM might fail to produce proper results
when V (x) has singularities and the formula (44) is actually not well-defined for
x = ± πn

2Lk
. For the sake of comparison, we consider a 6-D problem under the

attractive Coulomb potential.

Example 3 Consider a Quantum harmonic oscillator V (x) = −1/|x| and a Gaus-
sian wavepacket adopted as the initial condition.

f0(x,k) = π−3e−
(x1−1)2+x22+x23

2
−2k2

1−2k2
2−2k2

3 . (46)

We first calculate ΨDO under TKM or PSM for a X -grid mesh [−6, 6]3 with
Nx = 41,∆x = 0.3 and K-grid mesh [−4, 4]3 with Nk = 64,∆k = 0.125. In order
to get rid of the blow-up in the formula (44), we try to adopt two ways. The first
is to shift X -grid mesh to [−6 + δx, 6 + δx]3 with a small spacing δx. The second
is to set δx = 0 and let V (x) = 0 when |x| = 0. A comparison among the initial
ΨDO under different strategies is given in Figure 8. At first glance, no evident
differences are observed in the numerical results under TKM or PSM.
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Fig. 8 A comparison between TKM and PSM for a ΨDO with an initial Gaussian wavepacket.

However, when simulating the Wigner dynamics with X×K = [−6, 6]3×[−4, 4]3

and Nx = 41,∆x = 0.3, Nk = 32,∆k = 0.25, we have found that TKM and PSM
exhibit distinct performances. Specifically, PSM may suffer from large errors near
singularity and numerical instability as it treats the singularity near the origin
incorrectly. For the sake of illustration, we consider the spatial marginal density

P (x1, x2, x3) =

∫∫∫
R3

f(x, k1, k2, k3)dk1dk2dk3. (47)

The spatial marginal density is proved to be positive semi-definite. Therefore, the
negative value of numerical solution can be used an indicator for accuracy and
stability and is visualized in Figure 9. Although the spectral method might not
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Fig. 9 The time evolution of numerical minX P (x1, x2, x3) in log10 scale. PSM may introduce
very large artificial negative parts and finally suffers from numerical instability.

preserve the positivity of the spatial marginal density, the errors remain at a stable
level when TKM is adopted. By contrast, PSM may introduce very large artificial
negative parts and finally results in numerical instability.

In Figure 10, we visualize the spatial marginal distribution projected onto (x1-
x2) plane. It is found that the peak of spatial marginal distribution has been
evidently smoothed out by PSM at 2 a.u. and artificial negative valleys are clearly
seen at 6a.u. This coincides with the observation in Figure 9 that PSM suffers
from instability soon after 6a.u.
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(a) t = 2a.u. (left: TKM, middle: PSM with δx = 0, right: PSM with δx = 0.01).
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(b) t = 4a.u. (left: TKM, middle: PSM with δx = 0, right: PSM with δx = 0.01).
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(c) t = 6a.u. (left: TKM, middle: PSM with δx = 0, right: PSM with δx = 0.01).

Fig. 10 Visualization of the spatial marginal distribution projected onto (x1-x2) plane under
TKM and PSM. PSM might not produce correct numerical results and suffers from instability.
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4 Comparison among exponential integrators and splitting method

Finally, it needs to make a thorough comparison among various integrators,
which in turn provides a guiding principle in choosing an appropriate integrator
for our 6-D simulations. To this end, we provide two examples with exact solution.
The first is the quantum harmonic oscillator in 2-D phase space and the second is
the Hydrogen Wigner function of 1s state in 6-D phase space (see Example 3).

The performance metrics include the L2-error ε2(t):

ε2(t) =

[∫∫
X×K

(
f ref (x,k, t)− fnum (x,k, t)

)2
dxdk

] 1
2

, (48)

the maximal error ε∞(t):

ε∞(t) = max
(x,k)∈X×K

∣∣f ref (x,k, t)− fnum (x,k, t)
∣∣, (49)

and the deviation of total mass εmass(t):

εmass(t) =
∣∣∣ ∫∫

X×K
fnum (x,k, t) dxdk −

∫∫
Ω

f ref (x,k, t = 0) dxdk
∣∣∣, (50)

where f ref and fnum denote the reference and numerical solution, respectively,
and X ×K is the computational domain. In practice, the integral can be replaced
by the average over all grid points. Besides, the relative maximal error and rel-

ative L2-error are obtained by ε∞(t)
max(|f(x,k,0)|) and ε2(t)/

√∫∫
(|f(x,k, 0)|2dxdk),

respectively.

Our main observations are summarized as follows.

1. In order to ensure the accuracy of temporal integration, it is recommended to
use LPC1, instead of splitting scheme or multi-stage schemes.

2. The operator splitting scheme is still useful in practice, as it saves half of the
cost in calculation of nonlocal terms.

3. It is suggested to choose the stencil length nnb = 15 for PMBC to maintain
the accuracy, while nnb < 10 might lead to an evident loss of total mass.

The one-stage Lawson predictor-corrector scheme exhibit the best performance.
Actually, the advantage of the Lawson scheme in both accuracy and stability has
also been reported in the Boltzmann community (2) recently.

4.1 Quantum harmonic oscillator in 2-D phase space

The third example is the quantum harmonic oscillator V (x) = 1
2mωx

2. In this
situation, ΨDO reduces to the first-order derivative,

∂

∂t
f(x, k, t) +

~k
m
∇xf(x, k, t)− 1

~
∇xV (x)∇kf(x, k, t) = 0. (51)
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The exact solution can be solved by f(x, k, t) = f(x(t), k(t), 0), where (x(t), k(t))
obey a (reverse-time) Hamiltonian system ∂x/∂t = −~k/m, ∂k/∂t = mωx/~, and
has the following form

x(t) = cos
(√
ωt
)
x(0)− ~

m
√
ω

sin
(√
ωt
)
k(0),

k(t) =
m
√
ω

~
sin
(√
ωt
)
x(0) + cos

(√
ωt
)
k(0).

(52)

Example 4 Consider a Quantum harmonic oscillator V (x) = mωx2

2 and a Gaussian

wavepacket f0(x, k) = π−1e−
(x−1)2

2
−2k2

adopted as the initial condition. Here we
choose and ω = (π/5)2 so that the wavepacket returns back to the initial state at
the final time T = 10.

The computational domain is X ×K = [−12, 12]× [−6.4, 6.4], which is evenly
decomposed into 4 patches for MPI implementation. The natural boundary con-
dition is adopted at two ends so that there is a slight loss of mass (about 10−13)
up to T = 10. Since we mainly focus on the convergence with respect to ∆x and
nnb, simulations under ∆x = 0.025, 0.05, 0.1, 0.2, 0.3 and nnb = 10, 15, 20, 30 are
performed, where other parameters are set as: the time step τ = 0.00002 to avoid
numerical stiffness and ∆k = 0.025 to achieve very accurate approximation to
ΨDO. A comparison of all integrators under different ∆x and nnb is presented
in Figure 11, and numerical errors fnum − f ref are visualized in Figure 14. The
convergence with respect to ∆x and the mass conservation under different nnb are
given in Figure 12. From the results, we can make the following observations.

Comparison of non-splitting and splitting scheme: It is clearly seen that
LPC1 outperforms the splitting scheme and multi-stage non-splitting schemes in
accuracy, especially when ∆x is small, because it avoids both the accumulation of
the splitting errors and additional spline interpolation errors in multi-stage Lawson
scheme. While for sufficiently large ∆x, e.g., ∆x = 0.2 or 0.3, the performances of
all integrators are comparable as the interpolation error turns out to be dominated.

Numerical stability: The first order derivative in Eq. (51) brings in strong
numerical stiffness and puts a severe restriction on the time step τ in the parallel
CHAracteristic-Spectral-Mixed (CHASM) scheme. Nevertheless, the non-splitting
scheme seems to be more stable than the splitting scheme, and one-step scheme
is more stable than multi-stage ones. In Figures 11(a) and 11(b), we can observe
an abrupt reduction in accuracy for OS. This is induced by the accumulation of
errors near the boundary (see the small oscillations in Figures 14(a) and 14(d)).
In fact, LPC1 turns out to be stable up to T = 20 even under a larger time step
τ = 0.0005 and ∆x = 0.1, while OS suffers from numerical instability under such
setting (see Figure 13).

Convergence with respect to ∆x: The convergence rate is plotted in Figure
12. Only LPC1 can achieve fourth order convergence in ∆x, according with the
theoretical value of the cubic spline interpolation. By contrast, for other schemes,
the accumulation of errors induced by temporal integration and mixed interpola-
tions contaminate the numerical accuracy, leading to a reduction in convergence
order for small ∆x.

Influence of PMBCs: From Figures 11(d) and 11(e), one can see that nnb =
10 only bring in additional errors about 10−5, e.g., the small oscillations are found
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(b) ∆x = 0.2.
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(c) ∆x = 0.1.
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(e) ∆x = 0.025.

Fig. 11 Quantum harmonic oscillator: A comparison among different integrators under serial
and parallel implementations. (left: serial, middle: nnb=10, right: nnb = 20). LPC1 definitely
outperforms other integrators, especially when ∆x is small.

near the junctions of patches in Figure 14. But such errors seem to be negligible
when nnb ≥ 15, which also coincides with the observations made in (11). However,
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(a) Operator splitting scheme (OS).
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(b) One-step Lawson predictor-corrector scheme (LPC1).
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(c) Two-step Lawson predictor-corrector scheme (LAPC2).
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(d) Three-step Lawson predictor-corrector scheme (LAPC3).

Fig. 12 Quantum harmonic oscillator: The convergence (left: nnb=10, middle: nnb = 20)
and εmass(t) (right) of different integrators. LPC1 can achieve fourth-order convergence in
∆x, while other integrators may suffer from the reduction in convergence rate. PMBC indeed
has some influences on both accuracy and mass conservation, but fortunately they can be
eliminated when nnb ≥ 20.

the truncation of stencil indeed has a great influence on the mass conservation
as seen in Figure 12, where εmass is about 10−6 when nnb = 10 or 10−9 when
nnb = 15. Fortunately, its influence on total mass can be completely eliminated
when nnb ≥ 20.

Efficiency: For one-step evolution, OS requires spatial interpolations twice
and calculation of ΨDO once, while LPC1 requires spatial interpolations once and
calculation of ΨDO twice. Thus computational complexity of multi-stage schemes
is definitely higher than that of OS and LPC1.
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Fig. 13 Quantum harmonic oscillator: The Strang operator splitting suffers from numerical
instability under time step τ = 0.0005 and spatial spacing ∆x = 0.1, while LPC1 is stable
under such setting even up to T = 20.
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(a) OS.
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(b) LPC1.
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(c) LAPC2.
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(d) LAPC3.

Fig. 14 Quantum harmonic oscillator: A visualization of numerical errors fnum(x, k, t) −
f ref(x, k, t) at t = 5 induced by PMBC with nnb = 10, ∆x = 0.1. It is seen that PMBC may
bring in small oscillations at the junction of adjacent patches. The worse is the accumulation
of errors near the boundary (see OS and LAPC3), which might lead to numerical instability
for long-time evolution.

4.2 The Wigner function for the Hydrogen 1s state

The Hydrogen Wigner function is the stationary solution of the Wigner equa-
tion (4) with the pseudo-differential operator under the attractive Coulomb inter-
action V (x) = −1/|x− xA|,

ΘV [f ](x,k, t) =
2

c3,1i

∫
R3

e2i(x−xA)·k′ 1

|k′|2 (f(x,k−k′, t)−f(x,k+k′, t))dk′. (53)

The twisted convolution of the form (53) can be approximated by the truncated
kernel method (7; 14).
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For the 1s orbital, φ1s(x) = 1
2
√

2π2
exp(−|x|), and the corresponding Wigner

function reads

f1s(x,k) =
1

(2π)3

∫
R3

φ1s(x−
y

2
)φ∗1s(x+

y

2
)e−ik·ydy. (54)

Although it is too complicated to obtain an explicit formula (12), the Hydrogen
Wigner function of 1s state can be highly accurately approximated by the discrete
Fourier transform of Eq. (54): For kζ = ζ∆k,

f1s(x,kζ) ≈

Ny
2
−1∑

η1=−
Ny
2

Ny
2
−1∑

η2=−
Ny
2

Ny
2
−1∑

η3=−
Ny
2

φ1s(x−
η∆y

2
)φ∗1s(x+

η∆y

2
)e−i(ζ·η)∆k∆y(∆y)3.

By taking ∆y = 2π
Nk∆k

, it can be realized by FFT with Ny = 128.
The Hydrogen 1s Wigner function can be adopted as the initial and reference

solutions for dynamical testing. Besides, for multidimensional case, the reduced
Wigner function W1(x, k, t), defined by the projection of f onto (x1-k1) plane, is
used for visualization.

W1(x, k, t) =

∫∫
R2×R2

f(x,k, t)dx2dx3dk2dk3. (55)

For 1s state, the reduced Wigner function is plotted in Figure 15(a), which exhibits
a heavy tail in k-space as shown in Figure 15(b).
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(a) W1(x, k) for 1s orbital.
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(b) The heavy tail in momental space.

Fig. 15 The Hydrogen 1s Wigner function: Plot of the reduced Wigner function W1(x, k).

The computational domain is X ×K = [−9, 9]3 × [−6.4, 6.4]3 with a fixed spa-
tial step size ∆x = 0.3 (Nx1 = Nx2 = Nx3 = 61), which is evenly divided into
4×4×4 patches and distributed into 64 processors, and each processor provides 4
threads for shared-memory parallelization using the OpenMP library. The natural
boundary conditions are adopted at two ends. As the accuracy of spline interpo-
lation has been already tested in the above 2-D example, we will investigate the
convergence of nonlocal approximation under five groups: Nk = 8, 16, 32, 64, 80
(∆k = 1.6, 0.8, 0.4, 0.2, 0.16). Other parameters are set as: the stencil length in
PMBC is nnb = 15 and the time stepsize is τ = 0.025.

Again, a comparison of OS and LPC1 under different ∆k, as well as the conver-
gence in k-space, is presented in Figures 16 and 17. Numerical errors for reduced
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(e) LPC1, deviation in total mass.
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(f) OS, deviation in total mass.
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(h) Convergence of ε2 at t = 5.

Fig. 16 The Hydrogen 1s Wigner function: The performance of TKM under different ∆k,
with ∆x = 0.3. The convergence of TKM is verified, albeit with lower convergence rate due
to errors caused by the spline interpolation and truncation of k-space. In addition, LPC1 still
outperforms OS in both accuracy and mass conservation.

Wigner function W num
1 − W ref

1 under Nk = 32 and Nk = 64 are visualized in
Figure 18. From the results, we can make the following observations.
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Fig. 17 The Hydrogen 1s Wigner function: The non-splitting scheme outperforms the Strang
splitting in accuracy.
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(b) OS, Nk = 32.
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(c) LPC1, Nk = 64.
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(d) OS, Nk = 64.

Fig. 18 Hydrogen 1s Wigner function: A visualization of numerical errors Wnum
1 (x, k, t) −

W ref
1 (x, k, t) at t = 5 induced by truncation of k-space. Since the 1s Wigner function is not

compactly supported in [−6.4, 6.4]3, there are small errors found near the k-boundary, as well
as near x-boundary due to the natural boundary condition.

Convergence with respect to ∆k: The convergence of TKM is clearly ver-
ified in Figures 16(g) and 16(h), albeit its convergence rate is slower than expec-
tation due to the mixture of various error sources. Since the initial 1s Wigner
function is not compactly supported in [−6.4, 6.4]3 (see Figure 15(b)), the over-
lap with the periodic image may produce small oscillations near the k-boundary,
which is also visualized in Figures 18(c) and 18(d).

Comparison of LPC1 and OS: Nonetheless, with 613 × 643 uniform grid
mesh and LPC1 integrator, CHASM can still achieve relative maximal error about
3.45% and relative L2-error about 7.41% for the reduced Wigner function (55) up
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to T = 5, where max(|f1s(x,k)| = 1/π3 ≈ 0.0323 and
√∫∫

(|f1s(x,k)|2dxdk ≈
0.0635. When Nk = 80, the relative maximal error and L2-error reduce to 2.93%
and 6.33%, respectively. By contrast, when the Strang splitting is adopted under
the mesh size 613× 643 , the relative maximal error is 6.20% and relative L2-error
is about 11.02%. It is also clearly seen in Figure 17 that the non-splitting scheme
outperforms the splitting scheme for Nk ≥ 32 in accuracy.

Mass conservation: A slight deviation of the total mass is observed in time
evolution. From Figures 16(e) and 16(f), one can see that εmass up to t = 5 of
LPC1 is about 0.66%, regardless of Nk, while that of OS is about 1.35% when
Nk = 64 and becomes even larger when Nk goes smaller.
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