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A SPLITTING SPECTRAL METHOD FOR THE NONLINEAR

DIRAC-POISSON EQUATIONS

DANDAN WANG, YONG ZHANG, AND HANQUAN WANG∗

Abstract. We develop a splitting spectral method for the time-dependent nonlinear Dirac-

Poisson (DP) equations. Through time splitting method, we split the time-dependent nonlinear
DP equations into linear and nonlinear subproblems. To advance DP from time tn to tn+1,

the nonlinear subproblem can be integrated analytically, and linear Dirac and Poisson equation

are well resolved by Fourier and Sine spectral method respectively. Compared with conventional
numerical methods, our method achieves spectral accuracy in space, conserves total charge on the

discrete level. Extensive numerical results confirm the spatial spectral accuracy, the second order

temporal accuracy, and the l2-stable property. Finally, an application from laser field is proposed
to simulate the spin-flip phenomenon.

Key words. nonlinear Dirac-Poisson equations, spectral method, splitting method, laser field,

spin-flip.

1. Introduction

Maxwell-Dirac (MD) system represents the time-evolution of fast (relativistic)
electrons and positrons within external and self-consistent generated electromag-
netic fields, and it plays an important role in quantum electrodynamics [20, 21]. The
system combining Maxwell equations and Dirac equations is of great significance
to the progress of science and technology, the rapid development of information
age. And it has been widely employed in many areas such as quantum cosmology,
atomic physics, nuclear physics, gravitational physics [10, 23, 26].

Under the electrostatic condition, the Dirac-Poisson (DP) system can be di-
rectly derived from the MD system and it also can be adopted to study theoretically
the structures and/or dynamical properties of materials. In 1966, Wakano obtained
the localized solutions of the MD system under the electrostatic field [27]; in 1976,
Chadam and Glassey studied the solution of the 2d MD system with zero magnetic
field [9]; in 1994, Esteban and Sere confirmed the existence of stationary solutions
for the DP system [13]; in 2014, Brinkman, Heitzinger and Markowich used the DP
system to simulate graphene [7]; in 2017, Zhang et al. used variational methods
to analyze the existence of infinitely many stationary solutions for the DP system
[31].

Up to now, there are a few numerical methods to solve nonlinear Dirac equa-
tions: Finite difference methods [7, 17, 24], Runge-Kutta discontinuous Galerkin
methods[25, 29, 30], Fourier spectral methods [1, 3, 4, 6, 16], while efficient high-
order numerical methods for nonlinear DP equations are scarce.

In this paper, we propose a novel splitting spectral method for the time-
dependent DP equations. In time, we apply the splitting method. In space, we
apply Fourier spectral method and Sine spectral method to discretize the Dirac
and Poisson equations, respectively. The merits of the proposed method for the
nonlinear DP equations are that it is unconditionally stable, fast in computation,
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has spectral accuracy in space, and conserves the particle number, momentum and
energy of the system.

The organization of the article is following. In section 2, we introduce the
nonlinear DP equations and its dimensionless formulation. Besides, we give the
definition of charge, momentum, energy and prove the conservation laws. In section
3, we propose a splitting spectral method for the time-dependent DP equations
and introduce the detailed numerical algorithm in time and space, respectively.
In section 4, we analyze the stability and convergence of the splitting spectral
method. In section 5, we present numerical tests in 1-d, 2-d and 3-d DP equations,
respectively. As an application, we consider the laser-atom dynamics with the 2-d
DP equations. Finally, conclusion is drawn.

2. The nonlinear DP equations

2.1. Introduction of the nonlinear DP equations. MD system has been stud-
ied widely in quantum electrodynamics, and in this paper, we consider the following
electrostatic MD equations

iℏ∂tΨ = (−iℏcα ·∇+ eα ·A+mc2β)Ψ− eϕΨ,(1)

−∇2ϕ = |e||Ψ|2.(2)

In [12, 18], the equations are called Dirac-Poisson equations. And c is the speed
of light, e is the elementary charge, m is the electron or positron mass, ℏ is the
Planck’s constant, i is the imaginary unit, A(x, t) = (A1(x, t), A2(x, t), A3(x, t))

T

are the electromagnetic vector potentials, ϕ(x, t) is the electric potential. And the
unknown Ψ is the 4-vector complex wave function of the ‘spinorfield’: Ψ(x, t) =
(Ψ1(x, t),Ψ2(x, t),Ψ3(x, t),Ψ4(x, t))

T , x = (x1, x2, x3)
T is the spatial coordinates,

∇ = (∂1, ∂2, ∂3)
T , and ∇2 = ∂2

11 + ∂2
22 + ∂2

33. Explicitly, α = (α1,α2,α3)
T and β

are the 4× 4 Pauli-Dirac matrices

β =

(
I 0
0 −I

)
, αη =

(
0 ση

ση 0

)
, η = 1, 2, 3,

where I,0 and ση(η = 1, 2, 3) are the 2× 2 identity matrix, null matrix and Pauli
matrices, respectively. i.e.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Multiplying both-hand sides of the Eq.(1) by −i
mc2 to quantify it, we have

(3)
ℏ

mc2
∂tΨ = (− ℏ

mc
α ·∇− e

mc2
iα ·A− iβ)Ψ+

e

mc2
iϕΨ.

Now, we rescale the space, the time, the wave function and the potential func-
tion by setting

(4)
t = ℏ

mc2 t̃, x = ℏ
mc x̃, A = e

mc2 Ã, ϕ = e
mc2 ϕ̃,

Ψ = ( ℏ
mc )

3/2Ψ̃, Ψ̃ = Ψ̃(x̃, t̃), x̃ ∈ R3.

Substituting Eq.(4) into Eq.(3) and Eq.(2), then moving all ∼, we get the following
dimensionless DP equations in 3-d

(5)
∂tΨ = (−α ·∇− iα ·A− iβ)Ψ+ iϕΨ,

∇2ϕ = −λ2|Ψ|2.

where the coefficient of the Poisson equation depends on λ2 which is related to the
scaling value for wave function Ψ.
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Similarly to the dimension reduction of the nonlinear Schrödinger equation
and/or the Schrödinger-Poisson equations with/without anisotropic external pote-
ntials[2], when the initial dataΨ(x, 0) and the electromagneticpotentials ϕ(x, t) and
A(x, t) are strongly confined in the x3-direction and thus Ψ is formally assumed to
be concentrated on the x1x2-plane, then the 3-d DP equations (5) can be reduced
to the 2-d DP equations with x = (x1, x2)

T ∈ R2. When Ψ4 = Ψ3, Ψ2 = Ψ1

and the proper assumptions on the initial data and the external electromagnetic
potential, the 3-d DP equations (5) can be reduced to the 1-d DP equations in
the x1-direction. Therefore, the DP equations in 3-d (5), in 2-d and in 1-d can be
written in a unified way in d-dimensions (d = 1, 2, 3)

(6)
∂tΨ = (−

∑d
η=1 αη∂η − i

∑d
η=1 αηAη − iβ)Ψ+ iϕΨ,

∇2ϕ = −λ2|Ψ|2.

2.2. Conservation laws of the nonlinear DP equations. When potentials A
are time-independent, we prove that the charge, the momentum and the energy of
particle are conserved in the DP equations (6).

The charge Q is

(7) Q(t) =

∫
Rd

Ψ̄TΨ dx.

The momentum P is

(8) Pη(t) =

∫
Rd

Im(∂ηΨ̄
T Ψ) dx. (η = 1, . . . , d)

The total energy E is

E(t) =
∫
Rd

−Im(

d∑
η=1

Ψ̄Tαη ∂ηΨ)− Ψ̄TβΨ dx+

∫
Rd

ϕΨ̄TΨ(9)

−
d∑

η=1

AηΨ̄
TαηΨ dx+

∫
Rd

1

2
|∇ϕ|2 dx,

where Fermion energy EΨ =
∫
Rd −Im(

∑d
η=1 Ψ̄

Tαη ∂ηΨ) − Ψ̄TβΨ dx, interaction

energy EI =
∫
Rd ϕΨ̄

TΨ−
∑d

η=1 AηΨ̄
TαηΨ dx and electromagnetic energy Eem =∫

Rd
1
2 |∇ϕ|2 dx.
Among Eqs.(7)-(9), Im(Ψ) denotes the imaginary part of the complex quantity

Ψ, Ψ̄ is the conjugate of the complex quantity Ψ.

Proposition 2.1. If the solution Ψ and ϕ satisfy

lim
|x|→+∞

|Ψ(x, t)| = 0, lim
|x|→+∞

|∂xΨ(x, t)| = 0,

and

lim
|x|→+∞

|ϕ(x, t)| = 0, lim
|x|→+∞

|∂xϕ(x, t)| = 0,

uniformly for t ∈ R, then
d

dt
Q(t) = 0,

d

dt
P(t) = 0, and

d

dt
E(t) = 0.

Proof. We first give the proof in 1-d. In 1-d, we take Ψ4 = Ψ3, Ψ2 = Ψ1, we get
the following 1-d DP equations

(10)
∂tΨ1 = −∂1Ψ2 − iA1Ψ2 − iΨ1 + iϕΨ1,
∂tΨ2 = −∂1Ψ1 − iA1Ψ1 + iΨ2 + iϕΨ2.
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Taking the conjugate of both-hand sides of Eq.(10), we obtain

(11)
∂tΨ̄1 = −∂1Ψ̄2 + iA1Ψ̄2 + iΨ̄1 − iϕΨ̄1,
∂tΨ̄2 = −∂1Ψ̄1 + iA1Ψ̄1 − iΨ̄2 − iϕΨ̄2.

(1) Proof of d
dtQ(t) = 0. Multiplying both-hand sides of Eqs.(10) and (11)

by Ψ̄1, Ψ̄2 and Ψ1,Ψ2, respectively, then plugging the results into the following
equation and one finds

d

dt
Q(t)

=
d

dt

∫
R
(|Ψ1|2 + |Ψ2|2) dx1 =

∫
R
(∂tΨ̄1Ψ1 + ∂tΨ1Ψ̄1 + ∂tΨ̄2Ψ2 + ∂tΨ2Ψ̄2) dx1

=

∫
R
−∂1(Ψ̄2Ψ1 + Ψ̄1Ψ2) dx1 = 0.

(2) Proof of d
dtP(t) = 0.

Multiplying both-hand sides of Eqs.(10) and (11) by ∂1Ψ̄1, ∂1Ψ̄2 and ∂1Ψ1,
∂1Ψ2, respectively, then plugging the results into the following equation and one
gets

d

dt
P(t)

=
d

dt

∫
R
Im(∂1Ψ̄1Ψ1 + ∂1Ψ̄2Ψ2) dx1

=

∫
R
Im(−∂1Ψ1∂tΨ̄1 + ∂1Ψ̄1∂tΨ1 − ∂1Ψ2∂tΨ̄2 + ∂1Ψ̄2∂tΨ2) dx1

=

∫
R
Im[−iA1∂1(Ψ̄2Ψ1 + Ψ̄1Ψ2)− i∂1(|Ψ1|2 + |Ψ2|2) + iϕ∂1(|Ψ1|2 + |Ψ2|2)] dx1

= 0.

Here integration by parts has been used, i.e.∫
R
Ψ∂x(∂tΨ̄) dx = Ψ ∂tΨ̄|R −

∫
R
∂xΨ ∂tΨ̄ dx.

(3) Proof of d
dtE(t) = 0. The following process is based on the result of (1),

conditions of Proposition 2.1 and the method of integration by parts.
•Multiplying both-hand sides of Eqs.(10) and (11) by ∂1Ψ̄2, ∂1Ψ̄1 and ∂1Ψ2, ∂1Ψ1,

respectively, then one reaches

d

dt
EΨ(t) =

d

dt

∫
R
[−Im(Ψ̄2∂1Ψ1 + Ψ̄1∂1Ψ2)− (|Ψ1|2 − |Ψ2|2)] dx1

=

∫
R
Im[iϕ∂1(Ψ̄2Ψ1 + Ψ̄1Ψ2)]− 2A1i(Ψ̄2Ψ1 − Ψ̄1Ψ2) dx1

• Multiplying both-hand sides of Eqs.(10) and (11) by Ψ̄2, Ψ̄1 and Ψ2,Ψ1,
respectively, then one gets

d

dt
EI(t) =

d

dt

∫
R
ϕ(|Ψ1|2 + |Ψ2|2)−A1(Ψ̄2Ψ1 + Ψ̄1Ψ2) dx1

=

∫
R
−ϕ∂1(Ψ̄2Ψ1 + Ψ̄1Ψ2) + 2A1i(Ψ̄2Ψ1 − Ψ̄1Ψ2) dx1

• Obviously,
d

dt
Eem(t) =

d

dt

∫
R

1

2
|∂1ϕ|2 dx1 = 0.
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Finally,
d

dt
E(t) = d

dt
EΨ(t) +

d

dt
EI(t) +

d

dt
Eem(t) = 0.

Similar proof can be derived for the problem in 2-d and 3-d. For simplicity, we
omit the details here. □

In addition, we find that the following conservation law holds

(12) ∂tρ(x, t) +∇ · J(x, t) = 0, t ≥ 0, x ∈ Rd,

here particle density ρ = Ψ̄TΨ, current density J = Ψ̄TαΨ.

3. A splitting spectral method

In this section, we present a splitting spectral method for the DP equations
(6). In numerical computation, we truncate the problem into the following initial-
boundary value problem

∂tΨ = (−
d∑

η=1

αη∂η − i

d∑
η=1

αηAη(x, t))Ψ− i(β − ϕ(x, t) I)Ψ, x ∈ Ω, t ≥ 0(13)

∇2ϕ(x, t) = −λ2|Ψ(x, t)|2, x ∈ Ω, t ≥ 0(14)

Ψ(x, t) is periodic, and ϕ(x, t) = 0, x ∈ ∂Ω, t ≥ 0,(15)

Ψ(x, t) = Ψ0(x), x ∈ Ω.(16)

where Ω = (a, b) in one dimension, Ω = (a1, b1) × (a2, b2) in two dimension and
Ω = (a1, b1)×(a2, b2)×(a3, b3) in three dimension. ∂Ω is the boundary of Ω, Ψ0(x)
is a known function.

We choose the spatial mesh size hη =
bη−aη

Mη
(η = 1, · · · , d) in the xη-direction

with Mη given integer and the time step ∆t, respectively. We denote the spatial
grid points as

xp = (x1p1 , · · · , xdpd)
T , p = (p1, · · · , pd)T and p ∈ N , h = (h1, · · · , hd)

T , d = 1, 2, 3,

where

N = {p|0 ≤ p1 ≤ M1, · · · , 0 ≤ pd ≤ Md},

x1p1
= a1 + p1h1, · · · , xdpd

= ad + pdhd

and temporal grids as

tn = n∆t, n = 0, 1, 2, · · ·.

3.1. Splitting method in time. Two splitting methods are proposed here for
the DP equations (13)-(14). First, from time t = tn to t = tn+1, it may be solved
as the following two steps

∂tΨ(x, t) = −i(β − ϕ(x, t) I +

d∑
η=1

αηAη(x, t))Ψ(x, t) = AΨ(x, t),(17)

∇2ϕ(x, t) = −λ2|Ψ(x, t)|2, t ∈ [tn, tn+1]

∂tΨ(x, t) = −
d∑

η=1

αη∂ηΨ(x, t) = BΨ(x, t), t ∈ [tn, tn+1](18)

Therefore, the Eqs.(13)-(14) are solved in the following way

(19) Ψ(x, t+∆t)≈eA∆teB∆tΨ(x, t).
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For the nonlinear part Eq.(17), when the electromagnetic potentials A are
time-dependent, we split it into two sub-flows, i.e.,

∂tΨ(x, t) = −i(β − ϕ(x, t) I)Ψ(x, t) = A1Ψ(x, t),

∇2ϕ(x, t) = −λ2|Ψ(x, t)|2, t ∈ [tn, tn+1](20a)

∂tΨ(x, t) = −i

d∑
η=1

αηAη(x, t)Ψ(x, t) = A2Ψ(x, t), t ∈ [tn, tn+1](20b)

or symbolically we will let eA∆t≈eA1∆teA2∆t in Eq. (19) since A = A1 +A2.
In the first flow (20a), multiplying the conjugate of Eq.(20a) with multiplying

Ψ, and then subtracting that from the result that multiplying both-hand sides of
the Eq.(20a) by Ψ̄, we have d

dt |Ψ(x, t)|2 = 0. Namely,

(21) |Ψ(x, t)|2 = |Ψ(x, tn)|2, t ∈ [tn, tn+1].

Then, we obtain the exact solution to Eq.(20a)

(22) Ψ(x, t) = e−i(t−tn)(β−ϕ(x,tn) I)Ψ(x, tn), t ∈ [tn, tn+1],

where the solution ϕ(x, tn) is obtained from the following Poisson equation

(23) ∇2ϕ(x, t) = −λ2|Ψ(x, tn)|2, t ∈ [tn, tn+1].

In the second flow (20b), we treat the electromagnetic potentials A(x, t) at time
t = tn explicitly and denser time grid points chosen to avoid its impact on accuracy.
Therefore, we have the exact integration

(24) Ψ(x, t) = e−i(t−tn)
∑d

η=1 αηAη(x,tn) Ψ(x, tn), t ∈ [tn, tn+1]

The linear part Eq.(18) can be solved with Fourier spectral method. In this
step, we need to apply the technique of matrix diagonalization.

Next, we apply Strang splitting method[5, 11, 14, 28] for the Dirac equations
(13) from time t = tn to t = tn+1

∂tΨ
(1)(x, t) = BΨ(1)(x, t), Ψ(1)(x, tn) = Ψ(1)(x, tn), t ∈ [tn, tn+ 1

2
]

∂tΨ
(2)(x, t) = AΨ(2)(x, t), Ψ(2)(x, tn) = Ψ(1)(x, tn+ 1

2
), t ∈ [tn, tn+1]

∂tΨ
(3)(x, t) = BΨ(3)(x, t), Ψ(3)(x, tn+ 1

2
) = Ψ(2)(x, tn+1), t ∈ [tn+ 1

2
, tn+1]

Therefore, the Eq.(13) is solved in the following way

(25) Ψ(x, t+∆t)≈eB∆t/2eA∆teB∆t/2Ψ(x, t).

Here the time increments are ∆t/2 for the linear operator B, ∆t for the nonlinear
operator A. This kind of splitting method induces an error of O(∆t3), and can be
improved to arbitrary order at the cost of more computation time.

3.2. Spectral method in d-dimensional space. In this section, we present how
to apply the spectral method to solve the Dirac equations and Poisson equation
in different dimensioms. By the dimension reduction, we can easily solve two-
dimensional and one-dimensional problems. If we apply Fourier spectral method
to the Poisson equation, it does not have a well defined limit for x → 0 and it will
affect the overall numerical accuracy. In order to get better numerical accuracy, we
use Sine spectral method to solve Poisson equation and Fourier spectral method to
discretize Dirac equations, respectively. For convenience, performing the following
symbolic approximation

(26) Ψn
p ≈ Ψ(xp, tn), ϕn

p ≈ ϕ(xp, tn), p = (p1, · · · , pd)T , d = 1, 2, 3,
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and Ψn, ϕn is the solution vector at time t = tn with components Ψn
p, ϕ

n
p.

From time t = tn to t = tn+1, we discretize the DP equations (13)-(14) as
follows

(1) For the Poisson equation (14), we can construct the following Sine expan-
sion for an unknown function ϕ(x, t) with zero boundaries defined on Ω

(27) ϕ(x, t) ≈
∑
j∈H

ϕ̂j(t)sin(µj · (x− a)), t ∈ [tn, tn+1]

where a = (a1, · · · , ad)T , j = (j1, · · · , jd)T , M = (M1, · · · ,Md)
T ,

ϕ̂j ≈ 2d

M1 · · ·Md

∑
p∈H

ϕp sin(µj(xp − a)), j ∈ H

and
H = {j|1 ≤ j1 ≤ M1 − 1, · · · , 1 ≤ jd ≤ Md − 1},

µj = (µj1 , · · · , µjd)
T = (

πj1
b1 − a1

, · · · , πjd
bd − ad

)T , j ∈ H.

Substituting Eq.(27) into Eq.(14) and applying the orthogonality of the Sine
series, we get the following ODE

(28) |µj |2 ϕ̂j(t) = λ2 ρ̂j(t) = λ2 ̂(|Ψj(t)|2), t ∈ [tn, tn+1]

namely,

ϕ̂j(t) = λ2 ρ̂j(t)/|µj |2.
Finally, we obtain the numerical solution of Eq.(14) is that ϕn+1

p .
(2) For the electromagnetic potential flow (20b), the Pauli-Dirac matrices αη

are unitary, and the term

(29)

d∑
η=1

αηAη(xj , tn) = P n
j Λn

j (P
n
j )

−1, j ∈ N ,

where Λn
j = Λ(xj , tn) is a diagonal matrix and P n

j = P (xj , tn) is a complex

orthogonormal matrix, i.e. P̄ n
j

T
= (P n

j )
−1. Then we get one ODE

(30) ∂tΨ = −iP n
j Λn

j (P
n
j )

−1 Ψ.

Finally, we get the solution at time t = tn+1

(31) Ψ(tn+1) = P n
j e−i∆tΛn

j (P n
j )

−1 Ψ(tn).

(3) For the linear part of Dirac equations (13), namely, Eq.(18), we can
construct the following Fourier expansion for an unknown function Ψ(x, t) with
periodic boundaries defined on Ω

(32) Ψ(x, t) ≈ IM(Ψ(x, t)) =
∑
j∈M

Ψ̂j(t)e
iµj ·(x−a), t ∈ [tn, tn+1],

where

Ψ̂j =
1

M1 · · ·Md

∑
p∈L

Ψp e
−iµj ·(xp−a), j ∈ M,

L = {p|0 ≤ p1 ≤ M1 − 1, · · · , 0 ≤ pd ≤ Md − 1}
and

M = {j| − M1

2
≤ j1 ≤ M1

2
, · · · ,−Md

2
≤ jd ≤ Md

2
},

µj = (µj1 , · · · , µjd)
T = (

2πj1
b1 − a1

, · · · , 2πjd
bd − ad

)T , j ∈ M.
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Substituting Eq.(32) into Eq.(18), integrate the result over x ∈ Ω, and then noticing
the orthogonality of the Fourier series, we get the following ODEs

(33) ∂tΨ̂j = D Ψ̂j , j ∈ M, t ∈ [tn, tn+1].

Since the unitary matrix is diagonalizable, i.e. there exist a diagonal matrix Λ and
a complex orthogonormal matrix P , i.e. P̄ T = P−1. And in 1d,

D = −i

(
0 µj1

µj1 0

)
,

in 2d,

D = −i[α1µj1 +α2µj2 ],

in 3d,

D = −i[α1µj1 +α2µj2 +α3µj3 ].

Therefore,

D = PΛP−1.

Setting Φ̂j = P−1Ψ̂j , Eq.(33) is rewritten as

(34) ∂tΦ̂j = ΛΦ̂j .

Solving Eq.(34), we can get

(35) Φ̂j(tn+1) = eΛ∆t Φ̂j(tn), and Ψ̂j(tn+1) = P Φ̂j(tn+1), j ∈ M.

Finally, we obtain the numerical solution of Eq.(18) is that Ψn+1
p .

From time t = tn to t = tn+1, we evolve the following steps via the Sequential
splitting

ϕ̂n
j = λ2 ̂(|Ψn

j |2)/|µj |2(36)

ϕn+1
p =

∑
j∈H

ϕ̂n
j sin(µj(xp − a))(37)

Ψ∗
p = e−i(β−ϕn+1

p I)∆t Ψn
p(38)

Ψ∗∗
p = P n

p e−i∆tΛn
p (P n

p )
−1 Ψ∗

p(39)

Ψn+1
p =

∑
j∈M

P eΛ∆t P−1 Ψ̂∗∗
j eiµj ·(xp−a)(40)

From time t = tn to t = tn+1, we iterate the following steps via the Strang
splitting

ϕ̂n
j = λ2 ̂(|Ψn

j |2)/|µj |2(41)

ϕn+1
p =

∑
j∈H

ϕ̂n
j sin(µj(xp − a))(42)

Ψ∗
p =

∑
j∈M

P eΛ∆t/2 P−1 Ψ̂n
j e

iµj ·(xp−a)(43)

Ψ∗∗
p = e−i(β−ϕn+1

p I)∆t Ψ∗
p(44)

Ψ∗∗∗
p = P n

p e−i∆tΛn
p (P n

p )
−1 Ψ∗∗

p(45)

Ψn+1
p =

∑
j∈M

P eΛ∆t/2 P−1 Ψ̂∗∗∗
j eiµj ·(xp−a)(46)
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4. Stability analysis and error estimates for the splitting spectral method

In the past section, we use two splitting techniques to discrete equation in time.
Compared with the Sequential splitting method, the Strang splitting method has
one more order of accuracy in time. Now, we analyze the stability of the splitting
spectral method for the DP equations.

Proposition 4.1. If we define the usual discrete l2-norm on the box Ω as ∥Ψn∥2l2 =

h1 · · ·hd

∑
p∈L

|Ψn
p|2, (d = 1, 2, 3), then we have

(47) ∥Ψn+1∥2l2 = ∥Ψn∥2l2 , n = 0, 1, 2, · · ·.

Proof. (1) From Eqs.(36)-(40), we have

1

h1 · · ·hd
∥Ψn+1∥2l2 =

∑
p∈L

|Ψn+1
p |2 =

∑
p∈L

|
∑
j∈M

P eΛ∆t P−1 Ψ̂∗∗
j eiµj ·(xp−a)|2

= M1 · · ·Md

∑
j∈M

|P eΛ∆t P−1 Ψ̂∗∗
j |2 = M1 · · ·Md

∑
j∈M

|Ψ̂∗∗
j |2

=
1

M1 · · ·Md

∑
j∈M

|
∑
p∈L

Ψ∗∗
p e−iµj ·(xp−a)|2 =

∑
p∈L

|Ψ∗∗
p |2

=
∑
p∈L

|P n
p e−i∆tΛn

p (P n
p )

−1 Ψ∗
p|2 =

∑
p∈L

|Ψ∗
p|2

=
∑
p∈L

|e−i(β−ϕn+1
p I)∆t Ψn

p|2 =
∑
p∈L

|Ψn
p|2 =

1

h1 · · ·hd
∥Ψn∥2l2 .

Therefore, ∥Ψn+1∥2l2 = ∥Ψn∥2l2 , n = 0, 1, 2, · · ·.
(2) From Eqs.(42)-(46), applying the Strang splitting method in time,

1

h1 · · ·hd
∥Ψn+1∥2l2 =

∑
p∈L

|Ψn+1
p |2 =

∑
p∈L

|
∑
j∈M

P eΛ∆t/2 P−1 Ψ̂∗∗∗
j eiµj ·(xp−a)|2

= M1 · · ·Md

∑
j∈M

|P eΛ∆t/2 P−1Ψ̂∗∗∗
j |2 = M1 · · ·Md

∑
j∈M

|Ψ̂∗∗∗
j |2

=
1

M1 · · ·M3

∑
j∈M

|
∑
p∈L

Ψ∗∗∗
p e−iµj ·(xp−a)|2 =

∑
p∈L

|Ψ∗∗∗
p |2

=
∑
p∈L

|P n
p e−i∆tΛn

p (P n
p )

−1 Ψ∗∗
p |2 =

∑
p∈L

|Ψ∗∗
p |2 =

∑
p∈L

|e−i(β−ϕn+1
p I)∆t Ψ∗

p|2

=
∑
p∈L

|Ψ∗
p|2 =

∑
p∈L

|
∑
j∈M

P eΛ∆t/2 P−1 Ψ̂n
j e

iµj ·(xp−a)|2 =
∑
p∈L

|Ψn
p|2

=
1

h1 · · ·hd
∥Ψn∥2l2 .

Again, we show the stability of the method with Parseval’s equation [8]. □

From Proposition 4.1, we conclude that the new method is unconditionally
stable. Next we briefly establish error estimates. Under proper assumptions of
the exact solution Ψ(x, t) and electromagnetic potentials, it is easy to show the
following local error estimates via the formal Lie calculus introduced in [19]:

Proposition 4.2. For the Sequential splitting spectral method, it holds that:

(48) ∥Ψ(x, tn)− IM(Ψn(x))∥L2 ≲ hm0 +∆t1, n = 0, 1, 2, · · ·,
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where h = max{h1, · · · , hd} and m0 depends on the regularity of Ψ(x, t0).

Proposition 4.3. For the Strang splitting spectral method

(49) ∥Ψ(x, tn)− IM(Ψn(x))∥L2 ≲ hm1 +∆t2, n = 0, 1, 2, · · ·,
where h = max{h1, · · · , hd}, and m1 also depends on the regularity of Ψ(x, t0).

We omit the details of proof here. One may find some hints from [3].

5. Numerical results

In this section, we first test numerical accuracy for the Sequential splitting and
Strang splitting Fourier spectral method for the nonlinear Dirac equations in one
dimension, respectively. Next, we apply the proposed splitting spectral method to
solve the DP equations in 1-d, 2-d and 3-d, respectively.

In nonlinear Dirac equations, we define the following error function to quantify
the numerical method,

EΨl
(t) = ∥Ψexact

l (·, t)−Ψh1,∆t
l (·, t)∥∞, l = 1, 2,

where Ψexact
l (·, t) denotes the exact solution of the equation, Ψh1,∆t

l is the numerical
solution with mesh size h1 and time step ∆t.

In Dirac-Poisson equations, we can make Ψl, ϕ be the ‘exact’ solutions which
are obtained numerically via using our numerical method with a very fine mesh
and time step (e.g. h1 = 1/64,∆t =1e-03 in one dimension, h1 = h2 = 1/32,∆t
=1e-03 in two dimension and h1 = h2 = h3 = 1/8,∆t =1e-03 in three dimension),

and Ψh,∆t
l , ϕh,∆t be the numerical solution with mesh size h and time time step

∆t. To quantify the numerical method, we define the error functions as

EΨl
(t) = ∥Ψl(·, t)−Ψh,∆t

l (·, t)∥∞, l = 1, 2, 3, 4, Eϕ(t) = ∥ϕ(·, t)− ϕh,∆t(·, t)∥∞.

5.1. Numerical tests for 1d nonlinear Dirac equations. In this section, we
consider the following nonlinear Dirac equations in one dimension [15]

∂tΨ = A∂1Ψ+ if(|Ψ1|2 − |Ψ2|2)BΨ, x1 ∈ Ω, t ≥ 0,
Ψ(a1, t) = Ψ(b1, t), t ≥ 0

Ψ(x1, 0) = Ψ0(x1), x1 ∈ Ω.

where Ψ(x1, t) = (Ψ1(x1, t),Ψ2(x1, t))
T , f(s) = m − 2λs(m,λ ∈ R), A and B

denote the matrices

A =

(
0 −1
−1 0

)
, B =

(
−1 0
0 −1

)
.

When m = 1, λ = 1/2, one of the solitary wave solutions to the nonlinear Dirac
equations is

Ψexact
1 (x1, t) =(

√
(γ + 1)(1− Λ2)(1 + Λ)cosh(

√
1− Λ2x̃1)

1 + Λcosh(2
√
1− Λ2x̃1)

+ sign(ν)
i
√
(γ − 1)(1− Λ2)(1− Λ)sinh(

√
1− Λ2x̃1)

1 + Λcosh(2
√
1− Λ2x̃1)

)e−iΛt̃,

Ψexact
2 (x1, t) =(

i
√
(γ + 1)(1− Λ2)(1− Λ)sinh(

√
1− Λ2x̃1)

1 + Λcosh(2
√
1− Λ2x̃1)

+ sign(ν)

√
(γ − 1)(1− Λ2)(1 + Λ)cosh(

√
1− Λ2x̃1)

1 + Λcosh(2
√
1− Λ2x̃1)

)e−iΛt̃,

with Λ = 0.75, γ = 1√
1−ν2

, x̃1 = γ(x1 − νt) and t̃ = γ(t− νx1).
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Table 1. Spatial error analysis for the two splitting spectral methods
in solving 1-d Dirac equations.

M1 32 64 128 256

Sequential
EΨ1

(t) 3.1891e-03 2.7039e-05 8.8319e-07 8.8443e-07

splitting
EΨ2

(t) 4.1022e-04 2.5791e-05 1.5073e-06 1.5179e-06
CPU time(s) 0.059901 0.086839 0.170166 0.299854

Strang
EΨ1(t) 3.1890e-03 2.6706e-05 1.0127e-07 8.1613e-08

splitting
EΨ2(t) 4.1052e-04 2.5513e-05 4.8552e-08 5.4227e-08

CPU time(s) 0.883664 1.649848 3.199256 6.180290

Table 2. Temporal error analysis for the two splitting spectral method
in solving 1-d Dirac equations.

∆t 0.1 0.05 0.025 0.0125

Sequential
EΨ1

(t) 8.7993e-04 4.4126e-04 2.2089e-04 1.1050e-04

splitting
EΨ2

(t) 1.5079e-03 7.5405e-04 3.7707e-04 1.8854e-04
CPU time(s) 0.008800 0.015298 0.011713 0.016307

Strang
EΨ1

(t) 1.6536e-05 4.1355e-06 1.0382e-06 2.6407e-07

splitting
EΨ2(t) 4.2901e-05 1.0719e-05 2.6806e-06 6.7152e-07

CPU time(s) 0.020348 0.027796 0.034608 0.052385

To measure the accuracy of our method at time t = 0.1, we have carried out
experiments for differentM1 and ∆t, considering x1 ∈ [−25, 25]. In Table 1, we have
fixed ∆t=1e-04, observing the errors decrease until M1 = 128, when the method
achieves its maximum efficiency. And compared with the conclusion in [15], it is
not difficult to find that our method has spectral accuracy in space. In Table 2,
the results show that the Sequential splitting method has first-order precision and
Strang splitting method has second-order precision in time.

5.2. Numerical tests for the Dirac-Poisson equations. In this section, we
apply the Strang splitting spectral method to solve the DP equations in 1-d, 2-d
and 3-d, respectively.

Test 1. In 1-d DP equations (13)-(14), we consider the following initial con-
dition

Ψl(x1, 0) =
51/4√
2π1/4

e
−5x2

1
2 +ix1 , x1 ∈ [−8, 8], l = 1, 2.

Table 3. Error analysis at time t = 1.

EΨ1 EΨ2 Eϕ CPU time(s)

h1

1/4 2.0874e-07 1.8218e-07 1.2614e-09 0.153874
1/8 6.9023e-14 7.1819e-14 1.7989e-15 0.248460
1/16 5.5944e-14 5.2931e-14 8.3614e-16 0.467303
1/32 3.4949e-14 3.8143e-14 5.0654e-16 0.796025

∆t
1/20 5.4395e-04 5.4354e-04 6.5702e-05 0.086898
1/40 1.3561e-04 1.3551e-04 3.2136e-05 0.117994
1/80 3.3726e-05 3.3700e-05 1.5391e-05 0.182901
1/160 8.2677e-06 8.2614e-06 7.0244e-06 0.291026
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Figure 1. Plots for |Ψ1(x1, t)| at t =0, 0.5, 0.75 and 1, respectively.

Figure 2. Time evolution of the charge Q(t), the momentum P(t)
and the energy E(t).

Table 3 shows the method has spectral accuracy in space and second-order
accuracy in time. Figure 1 shows us the density function |Ψ1(x1, t)| at different
times. Figure 2 shows the time evolution of the charge Q(t), the momentum P(t)
and the energy E(t) which are presented as Eqs.(7)-(9). All of them agree with the
theoretical results shown in Proposition 2.1 and the stability Proposition 4.1 in 1-d.

Test 2. In 2-d DP equations (13)-(14), we consider the following initial con-
dition

Ψl(x1, x2, 0) =
21/4

2
√
π
e−

x2
1+x2

2
2 −3ix1 ,x ∈ [−12, 12]2, l = 1, 2, 3, 4.
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Table 4. Error analysis at time t = 1.

EΨ1
EΨ2

EΨ3
EΨ4

Eϕ

h1 = h2

1/2 7.7745e-04 6.5441e-05 5.7766e-05 3.9590e-05 5.8118e-08
1/4 8.3904e-13 7.8014e-13 7.7099e-13 8.1884e-13 4.9873e-16
1/8 4.2251e-14 4.8189e-14 6.3372e-14 6.2157e-14 3.9942e-16
1/16 4.3668e-14 4.3326e-14 5.6495e-14 5.6434e-14 4.4929e-16

∆t
1/20 2.8751e-04 3.1400e-04 3.9726e-04 2.8999e-04 1.5509e-05
1/40 7.1636e-05 7.8270e-05 9.9020e-05 7.2312e-05 7.5601e-06
1/80 1.7813e-05 1.9465e-05 2.4625e-05 1.7985e-05 3.6131e-05
1/160 4.3665e-06 4.7717e-06 6.0367e-06 4.4090e-06 1.6472e-06

Figure 3. Time evolution of the charge Q(t), the momentum in x1-
direction, P1(t), the momentum in x2-direction, P2(t) and the energy

E(t).

Table 4 shows that the scheme has spectral accuracy in space and second-
order accuracy in time. Figure 3 shows the time evolution of the charge Q(t), the
momentum in x1-direction, P1(t), the momentum in x2-direction, P2(t) and the
energy E(t). From this picture, we find that the proposed method keeps well the
conservation laws of the DP equations in 2-d. Figure 4 shows the density function
|Ψ1(x1, x2, t)| at different times.

Test 3. In 3-d DP equations (13)-(14), we consider the following initial con-
dition

Ψl(x1, x2, x3, 0) =
1251/4

2π3/4
e−

x2
1+x2

2+x2
3

10 +ix1 ,x ∈ [−12, 12]3, l = 1, 2, 3, 4.

Table 5. Error analysis at time t = 1.

EΨ1 EΨ2 EΨ3 EΨ4 Eϕ

h1 = h2 = h3
1 2.7073e-07 1.3713e-07 2.0394e-07 8.4632e-08 1.3175e-10

1/2 1.2010e-08 6.7110e-09 1.1227e-08 8.5682e-09 6.2113e-14
1/4 5.9759e-09 3.1468e-09 5.5050e-09 4.0496e-09 2.5960e-15

∆t
1/20 9.4753e-05 6.7682e-05 3.9873e-05 4.9895e-05 9.5012e-07
1/40 2.3632e-05 1.6875e-05 9.9486e-06 1.2441e-05 4.6233e-07
1/80 5.8778e-06 4.1969e-06 2.4747e-06 3.0942e-06 2.2075e-07
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Figure 4. Surface plots of |Ψ1(x1, x2, t)| at t =0, 2.5, 5 and 7.5, respectively.

Figure 5. Time evolution of the charge Q(t), the momentum in x1-
direction, P1(t), the momentum in x2-direction, P2(t), the momentum
in x3-direction, P3(t) and the energy E(t).

In Table 5, we find that the scheme has spectral accuracy in space and second-
order accuracy in time. From Figure 5, we can also find that the splitting spectral
method keeps well the conservation laws of the DP equations in 3-d, again. The
density function |Ψ1(x1, x2, 0, t)| at different times are shown in Figure 6.
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Figure 6. Surface plots of |Ψ1(x1, x2, 0, t)| at t =0, 2.5, 5 and 7.5, respectively.

5.3. A numerical application. In this subsection, we present a numerical appli-
cation to investigate the spin dynamics, since the Dirac-Poisson equation presented
here has automatic inclusion of electronic spin. When the external laser is assumed
to be linearly polarized in the y-direction and propagates in the x-direction, the
vector potential A is taken as (0, Ay(x, t))

T with Ay(x, t) defined as [22]

Ay(x, t) =

{
A0

ω
π tsin[ω(t− x/c)], 0 ≤ t− x/c ≤ π/ω

A0sin[ω(t− x/c)], t− x/c > π/ω

where A0 is the maximum field amplitude of the laser pulse, ω is the frequency of
laser and c = 137. The starting point for the time evolution of the atom under the
influence of the external laser field is

Ψ(x, y, 0) = Ne−2rr(ϵ−1)/2(
√
1 + ϵ, 0, i

y

r

√
1− ϵ, i

x

r

√
1− ϵ)T , r =

√
x2 + y2

with ϵ2 = 1 − 4/1372. Here N is defined as the normalization constant such that
||Ψ||2 = 1. In the numerical simulation presented below, the time step is given by
∆t= 1e-03, the spatial domain Ω = [−8, 8] × [−8, 8] is divided into Mx × My =
1282 subdomains. The effects of the magnetic field (the electron is pushed in the
propagation direction of the laser pulse) with short-time evolution are showed in
Figure 7. The three images in the top row show the density |Ψ1(x, y, t)| at different
times for a nonrelativistic case (A0 = 109.6, ω = 10) and the bottom row shows the
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Figure 7. Image plots for |Ψ1(x, y, t)| at t =2.5, 5 and 7.5 for two
cases. Case 1: a nonrelativistic regime (A0 = 109.6, ω = 10) in the top
row; Case 2: a relativistic regime (A0 = 411, ω = 10) in the bottom row.

apparent movement of cone points when the electron is pushed in the direction of
laser propagation(+x-direction) for a relativistic case (A0 = 411, ω = 10).

In addition, Figure 8 shows the population of four-component for nonrelativis-
tic and relativistic regimes. The sum of the density of four components keeps unity,
i.e., ||Ψ(x, y, t)||2l2 = 1. However, the decrease in the first component relative to
the second one indicates spin-flip, as it can be seen on the top row of Figure 8.
The same conclusion can be drawn from the bottom row of Figure 8. The top two
images have the same period of perturbation as the bottom two, but the amplitude
of spin-flip in the relativistic case is stronger than those in the nonrelativistic case.

6. Conclusion

We proposed a splitting spectral method for the time-dependent Dirac-Poisson
equations and found that both Sequential splitting method and Strang splitting
method can hold unconditionally stable numerical results. And their differences
are also clear, the former has low precision and fast calculation speed, while the
latter has high precision and slow calculation speed. Besides, Fourier spectral
method and Sine spectral method are developed for the Dirac-Poisson equations,
respectively. In the build up of the numerical algorithm, diagonalization of matrix
makes the method go smoothly. Finally, the numerical tests in 1-d, 2-d and 3-
d show the two splitting spectral methods both have spectral-order accuracy in
space, keep the conservation laws well. Through numerical study for the 2-d DP
equations with external laser field, we find some phenomena of spin-flip dynamics.
In the future, combining the perfectly matched layer method, we can apply the
proposed numerical method to describe more complicated phenomena of quantum
electrodynamics.
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Figure 8. Image plots for the spin-flip for two regimes. Case 1: a
nonrelativistic regime (A0 = 109.6, ω = 10) in the top row; Case 2: a
relativistic regime (A0 = 411, ω = 10) in the bottom row.
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