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Abstract—Evaluation of the electric field at the surface of a
conductor, which is well described by the Poisson equation, is
of great importance on many occasions in power systems. This
paper proposes a collocation boundary element method where the
unknown surface charge density function is assumed to be either
azimuth independent or dependent. Detailed formula, including
the quadrature rules and how to accelerate the computation
when the target point lies far away from the integral element,
are proposed. Numerical examples are shown to confirm the
convergence of the method, and manifest the great advantage for
the evaluation of the electric field around slender conductors.

Index Terms—electric field, slender conductor, collocation
boundary element method

I. INTRODUCTION

EVALUATION of electric fields at conductor surfaces is
important on many occasions in power systems. For

example, when evaluating the lightning shielding failure of
transmission lines, it is the surface electric field of lines that
influences the inception of the streamer and then upward leader
[1], [2], [3]; When predicting the corona performance as well
as the acoustic noise and radio interference of a power line,
the surface electric field is used as a practical criterion [4].
Therefore, the surface electric field evaluation continuously
draws great attention.

Typically, the frequency of the voltage and current in power
systems are relative low. The power frequency is only 50 or
60 Hz, and the frequency of lightning and most switching
impulses in power systems (except VFTO) is typically well
below 1 MHz or even lower. So in many cases, it is reasonable
to assume that the conductors in power systems are in the
electrostatic states, therefore, the electric field and potential
has the relation of ~E = −∇u.

To evaluate the surface electric field, the charge simulation
method (CSM) has been widely used in such simulations due
to its simplicity and efficiency [5]. However, the type and
location of the charges, and check points are set empirically,
which is not trivial for many cases; in addition, the simulation
charge in CSM is usually placed away from the conductor
surface, while physically, the charges shall distribute at the
conductor surface. It is natural to apply a method like boundary
element method (BEM) [6], in which the surface charge
densities can be used as the unknowns, to obtain the electric
field.
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BEM has been widely used in science and engineering,
such as fluid mechanics, acoustics, electromagnetic, and frac-
ture mechanics [7], [8], [9]. It attempts to use the assigned
boundary conditions to fit boundary values rather than values
throughout the computation domain which is defined by a
partial differential equation. It generally has less degrees of
freedom than FEM because it only discretizes the boundary
of the computation domain. It is efficient when the surface to
volume ratio is small, which is the case for slender conductors
in power systems; and is suitable for unbounded exterior
problems.

In this paper, considering the fact that the radius of a
power conductor is much smaller compared with its length, we
propose a collocation boundary element method to solve the
surface charge density along the curved cylindrical elements,
and then calculate the electric field. Considering the surface
charge density depends also on the azimuth, we develop the
BEM by assuming the charge densities depend on the axis
variables, or both the axis and azimuth variables. Details
on quadrature for both singular and regular integrals with
asymptotic expansions are presented. Finally, the convergence
of the method is numerically verified, and some examples are
given.

II. NUMERICAL METHODS

For simplicity, we shall focus on one-wire case, extension to
multi-wire cases is straightforward. Considering a horizontal
transmission wire as a cylinder of length 2L0 and radius R0,
we set the cylindrical axis as x-axis and the vertical direction
as z-axis, the cylinder is then parameterized as

Ωc = {x
∣∣|x|≤L0, (y, z)=r(cos θ, sin θ),r ≤ R0,θ ∈ [0, 2π)}.

The cylinder surface is denoted by Σ and is composed of
lateral surface ΣL and base surface ΣB. We shall denote points
in R3 by bold letters throughout this article.

A. Exterior Poisson equation and the integral formulation

The electric potential u(x) satisfies an exterior Poisson
equation:{

−∇2u = ρ(x), x ∈ Ω := R3 \ Ωc
u = g(x), x ∈ Σ,

(2.1)

subjecting to lim|x|→∞ u(x) = 0 at the far field. Here, ρ(x)
is the space charge and g(x) is a prescribed potential. To
solve (2.1), we first homogenize it by subtracting u1(x) =∫
R3 G(x−y)ρ(y) dy where G(x) := 1/(4π|x|) is the standard

Green’s function. Usually ρ(x) is highly localized, and the



2

evaluation of u1(x) does not cost too many efforts. The
residual potential u2 = u − u1 satisfies the Laplace equation
and can be expressed as a first kind integral:

u2(x) =

∫
Σ

G(x− y)σ(y) dSy,∀ x ∈ Σ, (2.2)

where σ(y) is the unknown surface charge density. Once σ(y)
is known, we have u(x) = (u1 + u2)(x) for x ∈ R3, and the
electric field can be obtained as

~E(x) = −∇u (2.3)

=−
∫
R3

(∇xG)(x−y)ρ(y)dy −
∫

Σ

(∇xG)(x−y)σ(y)dSy.

In cases where the ground plane is considered, the above
integral needs minor modifications by including the image
density via a modified Green’s function, and we omit details
here for brevity.

Generally speaking, there does not exist analytic solutions,
therefore we have to resort to numerical solutions. Here we
apply the collocation boundary element method, i.e., to solve
σ in (2.2) numerically by setting collocation points xi at the
surface and solve the corresponding linear system.

B. Collocation boundary element method

The boundary element method has been successfully de-
veloped during the last few decades. Many different versions
have been proposed, and here we choose the collocation
BEM (CBEM) mainly for its simplicity. To start with, we
first discretize the lateral surface and the base surface with
cylindrical elements and ring elements, respectively.

To be precise, for the lateral surface, the x-axis interval
[−L0, L0] is discretized by {xj}Nx

j=1 with Nx ∈ N, then the
j-th cylindrical element is defined as ej := {x

∣∣xj ≤ x ≤
xj+1, (y, z) = R0(cos θ, sin θ), θ ∈ [0, 2π)}. For the base
surface, we discretize the radius first as {rk}Nr

k=1, Nr ∈ N, and
define the k-th ring element as ek = {x

∣∣x = ±L0, (y, z) =
r (cos θ, sin θ), rk ≤ r ≤ rk+1}. Note that both {xj} and {rk}
can be either uniform or adaptive. Denote the partition of Σ
by Σh, which is composed of all the cylindrical elements ej
and ring elements ek.

We assume that the density function σ(x) belongs to a
piece-wise continuous space V , i.e.,

V = {f(x) : f(x)
∣∣
ΣB
, f(x)

∣∣
ΣL

are continuous}.

In addition, we note that σ(x) is not necessarily continuous
on the whole surface Σ. The numerical solution σh, an
approximation of σ(x), lies in space Vh defined as follows

Vh= {fh(x) : fh
∣∣
ej

=fh(x, θ) is linear in x, periodic in θ,

fh|ek = fh(r) is linear in radial variable r}. (2.4)

To be precise, we need to refine the cylindrical element.
Given ej , we use uniform grid in the azimuth direction as
θm = 2πm/M, M ∈ N and enforce the periodic condition,
i.e., fh(x, 0) = fh(x, 2π). Then we have ej = ∪Mm=1 e

m
j with

emj := {x|xj ≤ x ≤ xj + 1, (y, z) = r0(cos θ, sin θ), θm ≤
θ ≤ θm+1}.

A simpler Vh was used in [10] where σh is assumed to
depend on only the x-variable over the cylindrical element.
This simple method is referred to as reduced-basis method
hereafter. However, recent studies have revealed some weak
θ-dependence of the electric field distribution near the surface.
Therefore, besides the reduced-basis method, we shall adopt
Vh to explore the θ-dependence and refer it to full-basis
method hereafter.

The discrete unknowns are set on the vertexes of each
element, denoted by {xi}Ni=1, which include all vertexes of
the finest element emj and (±L0, 0, rk)T of each ring element
ek. Collocation points are chosen the same as source points.
To find σh ∈ Vh such that (2.2) holds at xi, we have

u2(xi) =

∫
Σh

G(x− y)σh(y)dSy, xi, i = 1 . . . , N. (2.5)

Written in matrix form, the above equation reads as follows

Aσh = u2,h, σh, u2,h ∈ RN×1, (2.6)

where A = (aij) ∈ RN×N is the coefficient matrix, σh, u2,h

are the unknown densities and the potential at the collocation
points respectively. The matrix entry aij is generated from a
surface integral over either a cylindrical or ring element.

It is worth mentioning that Eq. (2.5) and (2.6) works for
both single and multiple line cases; and can be used to evaluate
the field around slender conductors depending on the required
accuracy, especially for the straight metal wires. However, for
curved or twisted wires, the discretization of the wire should
be sufficient fine, and the azimuth dependent full basis method
is better.

As the linear system is usually not too large, we can
solve it with direct method. The formation of the matrix A
requires O(N2) operations and it involves two kinds of surface
integrals, i.e., an integral over a ring element at the base
surface and an integral on a cylindrical element on the lateral
surface. As is common, the singular or nearly-singular surface
integral requires a careful treatment in order to guarantee
necessary accuracy, while for the regular integral, Gaussian
quadrature is readily applied and the computing efficiency is
always of great concern. In this paper, the slender wires have
a very small radius to length ratio, which makes it possible
to speed up the regular integral computation using asymptotic
analysis.

C. Stable and efficient quadrature for surface integrals

A stable and efficient quadrature is of great importance. The
surface integral I(xi) =

∫
E G(xi − y)σh(y)dSy is singular

when xi sits on the element E , and is regular otherwise.
Quadrature for singular integral requires a specific treatment
in order to guarantee accuracy, while the efficiency is more
important for regular integrals as most of required integrals
are regular integrals.

For simplicity, we shall present here the strategy for
reduced-basis method where the density σh is assumed to be
dependent only on the x variable over the cylindrical element.
As the ratio of the radius to length is very small, and the
contribution from the side surface is minor, we shall focus on
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integrals over lateral cylindrical elements. The methodology
can also be applied to the ring element integral (those on the
base surface) and full-basis method, we omit the adaptions for
brevity.

Consider one cylindrical element of radius r0,

E = {x
∣∣x ∈ [x1, x2],(y, z)= r0(cos θ, sin θ), θ ∈ [0, 2π)}.

The potential generated by σh(x) := f(x) = f1
(x2−x)
x2−x1

+

f2
(x−x1)
x2−x1

over E at x = (x0, 0, d0)T is given below

I =
r0

4π

∫ x2

x1

dx
∫ 2π

0

dθ
f(x)√

(x−x0)2+r2
0 +d2

0− 2r0d0 sin θ
.(2.7)

The integrand is singular when x0 = x1 or x2 and d0 = r0,
and is regular otherwise. For the singular integral, take x0 =
x1 for example, (2.7) is simplified as follows

I =
r0

4π

∫ ∆x

0

dx
∫ 2π

0

dθ
f(x+ x1)√

x2+ 2r2
0(1− sin θ)

=
2r0

4π

∫ 1

−1

dt
∫ ∆x

0

dx
f(x+ x1)√

x2+ 2r2
0(1− t)

√
1− t2

:=
r0

2π
(f1I1 +

f2 − f1

∆x
I2), (2.8)

where

I1 =

∫ 1

−1

dt√
1− t2

∫ ∆x

0

dx√
x2 + 2r2

0(1− t)
, (2.9)

I2 =

∫ 1

−1

dt√
1− t2

∫ ∆x

0

xdx√
x2 + 2r2

0(1− t)
. (2.10)

The second identity holds by a change of variable t = sin θ
over the interval θ ∈ [−π/2, π/2]. To compute I1 and I2, we
first integrate the inner integral analytically, and the resulting
integrand, function of t, is regular. The remaining 1-D integral
can be computed with Gaussian quadrature after filtering its
singular part. Take I2 for example.

I2 =

∫ 1

−1

√
(∆x)2 + 2r2

0(1− t)√
1− t2

dt−
∫ 1

−1

√
2r0√

1 + t
dt

:=

∫ 1

−1

(g1(t) + g2(t) + r2(t)) dt− 4r0, (2.11)

where

g1(t) =
∆x√

2

1√
1− t

, g2(t) =
1√
2

1√
1 + t

√
(∆x)2 + 4r2

0,

and r2(t) =
√

(∆x)2 + 2r2
0(1− t)/

√
1− t2 − g1(t) − g2(t)

is regular. The singular components are integrated exact, i.e.,∫ 1

−1
g1(t)dt = 2∆x,

∫ 1

−1
g2(t)dt = 2

√
(∆x)2 + 4r2

0 , and the
remaining integral

∫ 1

−1
r2(t)dt is approximated by Gaussian

quadrature. Following this way, the double integral finally
comes down to a standard 1-D regular integration.

For regular integrals, one can first integrate with respect to
x, then apply Gaussian quadrature to the resulting regular 1-
D integrals. Fortunately, the integration can be accelerated by
exploring the small radius property. When the collocation point
xi lies far away from the cylindrical element, the integrand can
be approximated by polynomials via Taylor’s expansion, then

TABLE I
COMPARISON OF THE CPU TIME (IN SECONDS) FOR DIRECT AND THE

TAYLOR EXPANSION METHOD.

N 171 339 675 1347 2691

Direct 0.830 3.235 12.68 50.76 206.2
Taylor 0.027 0.071 0.270 0.972 3.836

the resulting polynomials are separable and can be integrated
exact. Take the case where r0 � d0, which is very common in
multi-wire cases, for example, we first approximate the inverse
of the distance function as follows[

(x− x0)2 + d2
0 + r2

0 − 2r0d0 sin θ
]− 1

2

=
[
(x− x0)2 + d2

0

]− 1
2

[
1 +

r2
0 − 2r0d0 sin θ

(x− x0)2 + d2
0

]− 1
2

≈
P∑
p=0

Cp

(
r2
0 − 2r0d0 sin θ

(x− x0)2 + d2
0

)p (
(x− x0)2 + d2

0

)− 1
2

=
1

d0

P∑
p=0

Cp

(
r2
0

d2
0

− 2
r0

d0
sin θ

)p(
d2

0

(x− x0)2 + d2
0

)p+ 1
2

(2.12)

where Cp = (−1)p(2p−1)!!/2p are the expansion coefficients
for (1+x)−

1
2 at x = 0 and the integer p is chosen large enough

to guarantee the accuracy. Then we will have separable poly-
nomials instead and the integral (2.7) will be calculated exactly
and easily. Finally, the regular integral evaluation boils down
to algebraic computations of some pre-computed constants,
thus making the calculation free of numerical quadrature and
sufficiently efficient. We omit details for brevity. For the other
case where (d0 + r0)2 � min((x0 − x1)2, (x0 − x2)2), i.e.,
the target point is far away along the x-axis direction, similar
approximation procedure is also applicable. Similar ideas are
applicable to ring element integrals and those in the full-
basis method. The approximation method saves computational
efforts dramatically. A comparison of the CPU time with and
without the Taylor’s expansion is given in Table I, and a speed
up factor around 50 is observed. The speed up factor increases
as the number of wires increases.

The above comparison infers that there exists some sparsity
in the arising matrix, which enable us to use the low rank
approximation or tree codes to accelerate the computation, see
[11], [12].

III. NUMERICAL RESULTS

Here we present examples to confirm the numerical con-
vergence of the method, and then apply it to both one-wire
and multi-wire cases. In all the examples, we set the space
charge ρ = 0, and so is u1. With an abuse of notations, we
will denote u2 by u hereafter.

A. Convergence of the method

First, we investigate the convergence using a benchmark
with an exact solution. Consider one wire with a radius 0.5
and length 10 in free space, we set the exact solution of u as
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uext(x) = |x|−1, and the boundary condition is prescribed as
g(x) = uext

∣∣
Σ

accordingly. Denote the numerical solution by
uhn = ∂nu

h and define error function eh = ∂nuext−uhn, where
∂nuext is the exact solution of the surface charge density. Fig. 1
shows that the error eh diminishes uniformly as the mesh size
h approaches zero. Therefore, the convergence of the method
is clear.
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Fig. 1. Exact surface charge density ∂nuext (up); errors eh with different
mesh sizes (down) .

Next, we investigate the convergence for a one-wire case, in
which the wire is 20 m long with a radius 2 cm, and is applied
a voltage of 50 kV in free space. Fig. 2 plots the electric field
|E| on the lateral surface with different mesh sizes versus x-
axis near the cylinder end (x=10 m). Numerical convergence
is clearly observed.

B. CSM with constant and linear line charge
We also compare the proposed method with CSM. Consider

one wire which is 20 m long with a small radius of 2 cm.
we place line charges along the x-axis (which is along the
conductor) with piecewise constant or linear densities. The
target points sit right above the source points. Fig. 3 shows
an oscillatory behavior of the calculated piecewise constant
line charge Q which is clearly unphysical; while the results
by the piecewise linear charge CSM coincide with the scaled
density 2πr0σh computed by the reduced-basis method, and
are reasonable.

We clearly see that without a careful treatment of the
simulation charges, CSM does not work even for such a simple
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Fig. 2. Convergence test: Electrical field |E| with different meshes.

case, which on the other hand shows the superiority of the
BEM.
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Fig. 3. CSM: Nonphysical oscillatory with piecewise constant line charge
(up); Line charge distribution with piecewise linear charge and reduced-basis
method (down).

C. The full-basis method and applications

In this example, we assume σh ∈ Vh and discretize the
azimuth variable uniformly with M points. The density σh
is piecewise bilinear in x and θ over the cylindrical element,
and M = 4 by default unless otherwise stated. All the wires
are 20 m long, and with a radius of 2 cm, and are with a
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voltage of 50 kV. For the cases that consider the influence of
the ground plane, the ground plane is considered as a infinite
large flat plane with a height of zero (i.e., the x-y plane), and
at a zero potential. The ground plane is treated by the well
known method of image.

First we consider a one-wire case considering the ground
plane, and the wire center is located at (0, 0, H)T . Fig. 4
presents |E(x, θi)| with different heights, where the lines
going through θ = 0, π/2, π, 3π/2 are labeled right, up, left
and down, respectively. The θ-dependence of the electric field
is clearly observed. Compared with the reduce-basis method,
the full-basis method would be more accurate considering the
ground plane.
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Fig. 4. Electrical field |E| with different height H when the ground plane is
present: H = 3 (left) and H = 10 (right).

Then we investigate the influence of the ground plane
by a four-wire case. Assume four wires are centered at
A(0, 10), B(L, 10), C(L,L+ 10), D(0, L+ 10), respectively,
i.e., vertexes of a square of length L, in the y-z plane. Here
we choose L = 0.45 m. Fig. 5 displays the surface electric
field |E| of line A accounting for the influence of the ground
plane. Besides the θ-dependence of the electric field, we see
an increase in |E| (as well as σh) when the ground plane is
considered.

0 2 4 6 8

x(m)

2

2.5

3

3.5

4

4.5

5

|E
| (

kV
/c

m
)

right

up

left

down

0 2 4 6 8

x(m)

2

2.5

3

3.5

4

4.5

5

5.5

|E
| (

kV
/c

m
)

right

up

left

down

Fig. 5. Electrical field |E| when H = 10 m, ground plane missing (up) and
present (down).

IV. CONCLUSIONS

In this article, we propose a collocation boundary element
method, allowing the surface charge density function σ to be
either azimuth variable dependent or not.

Detailed numerical quadrature rules are provided for both
singular and regular surface integrals. Two common kinds
of regular integrals are accelerated greatly by using Taylor’s
expansion of the distance function when the target point lies
far away from the integral element.

Numerical examples are shown to verify the convergence
of the method and manifest the potential for the evaluation of
electric field around slender conductors.
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