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Abstract. We consider dimension reduction for the three dimensional (3D) Schödinger equation
with the Coulomb interaction and an anisotropic confining potential to lower dimensional models in
the limit of infinitely strong confinement in two or one space dimensions and obtain formally the
surface adiabatic model (SAM) or surface density model (SDM) in two dimensions (2D) and the
line adiabatic model (LAM) in one dimension (1D). Efficient and accurate numerical methods for
computing ground states and dynamics of the SAM, SDM and LAM models are presented based on
efficient and accurate numerical schemes for evaluating the effective potential in lower dimensional
models. They are applied to find numerically convergence and convergence rates for the dimension
reduction from 3D to 2D and 3D to 1D in terms of ground state and dynamics, which confirm some
existing analytical results for the dimension reduction in the literatures. In particular, we explain
and demonstrate that the standard Schrödinger-Poisson system in 2D is not appropriate to simulate
a “2D electron gas” of point particles confined into a plane (or more general a 2D manifold), whereas
SDM should be the correct model to be used for describing the Coulomb interaction in 2D in which
the square root of Laplacian operator is used instead of the Laplacian operator. Finally, we report
ground states and dynamics of the SAM and SDM in 2D and LAM in 1D under different setups.
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1. Introduction. Low dimensional quantum systems of fermions or bosons usu-
ally arise from the many-body (or N -body) quantum systems which are modeled by
the linear Schrödinger equation for N particles under proper given binary interac-
tion between different particles with each particle in three spatial physical dimensions
(3D) by using the mean field theory or approximation [2, 13–15, 28–30, 41]. Thus the
original 3N or 3N + 1 dimensional problem can be approximated or reduced to a
“one particle” nonlinear Schrödinger (NLS) equation in three space dimensions (3D)
with nonlinear interactions to compensate or approximate the binary interaction in
the original N -body system [13–15, 28, 29, 36]. In many cases, the reduced 3D NLS
equation can be further reduced to lower dimensional models. The dimension reduc-
tion results from either a geometrical symmetry (e.g. a translational invariance in one
or two space dimensions) or confining the quantum particles in either one dimension
(e.g. 2D “electron sheets”) or two dimensions (e.g. 1D “quantum wires”) or even all
three space dimensions (0D “quantum dots”) [16,34,43]. In fact, the confinement can
be modeled by adding to the Hamiltonian operator an exterior confining potential
with a small parameter, e.g. an anisotropic harmonic oscillator potential [17, 19, 20].
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The small parameter limit of infinitely strong confinement then yields the correct
asymptotic model in lower dimensions. In deriving and/or justifying rigorously math-
ematical models for low dimensional quantum systems of fermions or bosons, physical
intuition, asymptotic analysis and numerical simulation play essential roles.

For bosons, especially Bose-Einstein condensation (BEC) [2,41], by using a Hartree
ansatz, the linear Schrödinger equation for N bosons under the short-range Fermi (or
contact) interaction is well approximated by the Gross-Pitaevskii equation (GPE) in
3D which is a NLS equation with cubic nonlinearity [9, 20, 41]. Rigorous mathemat-
ical justification for this reduction can be found in the literatures [5, 28, 35–37] for
the ground state and dynamics of BEC. In addition, the 3D GPE for BEC is fur-
ther dimensionally reduced to 2D and 1D GPEs for disk-shaped and cigar-shaped
BECs, respectively, under anisotropic harmonic oscillator potentials [18]. Recently,
dimension reduction for 3D GPE to lower dimensions was extended to 3D GPE with
long-range dipole-dipole interaction for dipolar BEC with arbitrary dipolar polar-
ization angles [22]. For formal derivation of these dimension reduction and their
mathematical justification and numerical comparison, we refer to [4,8] and references
therein.

For electrons, again via the “mean field limit” [13–15,29], the linear Schrödinger
equation for N electrons with binary Coulomb interaction between different electrons
can be approximated by a dimensionless single nonlinear Schrödinger equation with
Coulomb interaction in 3D:

(1.1) i ∂tψ(x, t) =

[
−1

2
∆ + V (x) + κϕ

]
ψ, x ∈ R3, t > 0,

where

(1.2) ϕ(x, t) =
1

4π|x|
∗ |ψ|2 ⇐⇒ −∆ϕ(x, t) = |ψ(x, t)|2, x ∈ R3, t ≥ 0.

Here x = (x, y, z) ∈ R3 is the spatial Cartesian coordinates, ψ = ψ(x, t) is the
complex-valued wave-function describing the electron system in a mean field approx-
imation, V (x) is a given real-valued external potential, ϕ is the Coulomb potential
which is a convolution of the Coulomb kernel, i.e., 1

4π|x| which happens to be the

Green’s function of the Laplace operator in 3D, and the density |ψ|2, and κ is a di-
mensionless coupling constant – “Poisson coupling constant”. Thus the system of
(1.1)-(1.2) is usually called as the Schrödinger-Poisson system (SPS) in the litera-
tures [12, 49]. In fact, the corresponding rigorous derivation of this kind of “Hartree
equations” was started from a Hartree ansatz for the many-body (e.g. N -body)
wavefunction by using a “weak coupling scaling” (i.e., a factor 1/N in front of the
Coulomb interaction potential) and passing to the limit N → ∞ in the BBGKY
hierarchy [13, 14, 29]. For detailed derivation of the above SPS (1.1)-(1.2) and its
mathematical justification, we refer to [13,14,29] and references therein. In addition,
by assuming uniform distribution of the electrons in one or two spatial dimensions
and integrating the Coulomb interaction kernel 1

4π|x| in 3D along the z-line or the

(y, z)-plane, the SPS (1.1)-(1.2) in 3D can be further reduced to a SPS in 2D and 1D,
respectively

i ∂tψ(x, t) =

[
−1

2
∆ + V (x) + κϕ

]
ψ, x ∈ Rd, t > 0,(1.3)

−∆ϕ(x, t) = |ψ(x, t)|2 ⇐⇒ ϕ(x, t) = Ud(x) ∗ |ψ|2, x ∈ Rd, t ≥ 0,(1.4)
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where x = x ∈ R in 1D with d = 1 and x = (x, y) ∈ R2 in 2D with d = 2 and Ud is
the Green’s function of the Laplace operator in d-dimensions defined as

(1.5) Ud(x) =


− 1

2 |x|, d = 1,

− 1
2π ln |x|, d = 2,

1
4π |x|

−1, d = 3,

⇐⇒ Ûd(ξ) =
1

(2π)d/2
1

|ξ|2
, x, ξ ∈ Rd,

where f̂(ξ) is the Fourier transform of a function f(x) for x, ξ ∈ Rd, which is defined

as f̂(ξ) = 1
(2π)d/2

∫
Rd f(x) e−iξ·xdx.

Another way to reduce the SPS (1.1)-(1.2) in 3D to lower spatial dimensions is
through applying strong confinement in one or two spatial dimensions. In fact, the
spatial confinement is an essential feature of many “nanoscale devices” and has gained
much attention from both experimental and mathematical studies [3, 31, 40, 42]. Al-
though the SPS (1.3)-(1.4) in 2D or 1D has been used in some literatures to simulate
low dimensional quantum systems of fermions such as 2D “electron sheets” or 1D
“quantum wires”, it is highly debated or mathematically mysterious that whether the
above SPS is an appropriate model for these confining low dimensional quantum sys-
tems. In fact, intuitively point particles confined to a 2D manifold still interact with

the Coulomb interaction potential at O
(

1
|x|

)
in 2D, thus it seems that the SPS (1.3)-

(1.4) in 2D is not an appropriate model. There have been some studies on finding
appropriate mathematical models and providing mathematical and/or numerical jus-
tification for the quantum degenerated electron gas (degenerated Fermi gas) occurring
in semiconductor devices due to anisotropic confining potential [40]. Two asymptotic
quantum transport models for 2D electron gas, namely the surface adiabatic model
and the surface density model, have been proposed from the SPS (1.1)-(1.2) in 3D
by applying strong confinement in one dimension [19, 40]. In addition, by using an
interesting scaling in the 3D SPS (1.1)-(1.2), i.e., re-scaling κ in an appropriate way
to the confinement strength, the NLS equation with cubic nonlinearity in 1D was
obtained [17].

The main aim of this paper is to derive asymptotically and systematically dimen-
sion reduction of the 3D SPS (1.1)-(1.2) under an anisotropic confining potential to
lower dimensional models in the limit of infinitely strong confinement in two or one
space and to provide numerical and/or mathematical justification for this dimension
reduction. For this purpose, we take the anisotropic confining potential V (x) in (1.1)
of the following forms with x⊥ = (x, y) ∈ R2 and x = (x⊥, z) ∈ R3:

Case I (pancake-shaped). The potential is strongly confined in the vertical z-
direction as

(1.6) V (x) = V2(x⊥) +
1

ε2
Vz

(z
ε

)
, x ∈ R3 satisfying lim

|z|→∞
Vz(z) =∞;

Case II (cigar-shaped). The potential is strongly confined in x⊥-plane as

(1.7) V (x) = V1(z) +
1

ε2
V⊥

(x⊥
ε

)
, x ∈ R3 satisfying lim

|x⊥|→∞
V⊥(x⊥) =∞;

where 0 < ε � 1 is a small dimensionless parameter describing the strength of the
confinement. In Case I, when ε → 0+, the 3D SPS (1.1)-(1.2) can be reduced to
a surface adiabatic model (SAM) or surface density model (SDM) in 2D; and resp.,
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in Case II, it can be reduced to a line adiabatic model (LAM) in 1D. Numerical
methods are presented for discretizing the SAM and SDM in 2D and LAM in 1D.
Based on the numerical methods, the dimension reduction is studied numerically and
the convergence rates are obtained from the numerical results. Comparisons with the
SPS (1.3)-(1.4) in 2D and 1D are reported numerically. In addition, the SAM and
SDM in 2D and LAM in 1D are applied to simulate low dimensional quantum systems
of electrons such as “electron sheets” or graphene in 2D or “quantum wires” in 1D.

The paper is organized as follows. In Section 2, dimension reduction is presented
in details for the 3D SPS (1.1)-(1.2) to 2D and 1D when the potential is chosen as
described in Cases I and II, respectively. In Section 3, numerical methods are proposed
for discretizing the SAM and SDM in 2D and LAM in 1D. Extensive numerical results
are reported to confirm the dimension reduction and to show convergence rates and
applications in Section 4. Finally, some concluding remarks are drawn in Section 5.

2. Derivation of low dimensional models. In this section, we will present
detailed dimension reduction for the 3D SPS (1.1)-(1.2) to 2D and 1D. Assume the
initial data for the 3D SPS is given as

(2.1) ψ(x, 0) = ψ0(x), x ∈ R3.

Define the linear operator H as

(2.2) H = −1

2
∆ + V (x), x ∈ R3.

2.1. From 3D to 2D. When the potential V (x) in (1.1) is chosen as Case I
(1.6), then the linear operator H can be split as

(2.3) H = −1

2
∆⊥ + V2(x⊥)− 1

2
∂zz +

1

ε2
Vz

(z
ε

)
:= H⊥ +Hε

z = H⊥ +
1

ε2
Hz̃,

where ∆⊥ = ∂xx + ∂yy, z = εz̃ and

Hε
z := −1

2
∂zz +

1

ε2
Vz

(z
ε

)
=

1

ε2

[
−1

2
∂z̃z̃ + Vz (z̃)

]
:=

1

ε2
Hz̃,(2.4)

H⊥ := −1

2
∆⊥ + V2(x⊥), Hz̃ := −1

2
∂z̃z̃ + Vz (z̃) .(2.5)

For Hz̃ in (2.5), due to (1.6), we know that the following eigenvalue problem admits
distinct orthonormal eigenfunctions

(2.6) Hz̃χ(z̃) =

[
−1

2
∂z̃z̃ + Vz (z̃)

]
χ(z̃) = µχ(z̃), z̃ ∈ R,

with ‖χ‖2 :=
∫
R |χ(z̃)|2 dz̃ = 1. In fact, they can be chosen to form an orthogonal basis

of L2(R) and be denoted as {χk(z̃)} with corresponding eigenvalues {µk} satisfying
µ0 < µ1 ≤ µ2 ≤ . . . . Thus (χεk(z), µεk) with

(2.7) µεk =
µk
ε2
, χεk(z) =

1√
ε
χk(z̃) =

1√
ε
χk

(z
ε

)
, k = 0, 1, 2, . . .

are orthonormal eigenpairs to the operator Hε
z .
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For simplicity of notation, here we only consider “pure state” case in the strong
confinement direction, especially the “ground state” case [19,20]. Assuming that the
initial data ψ0 in (2.1) satisfies

(2.8) ψ0(x) ≈ ψ2(x⊥)χε0(z), x ∈ R3, 0 < ε� 1,

noting the scale separation in (2.3), when ε → 0+, the solution ψ to the 3D SPS
(1.1)-(1.2) can be well approximated as

(2.9) ψ(x, t) ≈ ψ2(x⊥, t) χ
ε
0(z) e−i µ

ε
0 t, x ∈ R3, t ≥ 0.

Plugging (2.9) into (1.1) and then multiplying by χε0(z) ei µ
ε
0 t, integrating for z over

R and noticing (1.2), formally, we obtain

(2.10) i∂tψ2(x⊥, t) =

[
−1

2
∆⊥ + V2(x⊥) +

κ

2
ϕε2(x⊥, t)

]
ψ2, x⊥ ∈ R2, t > 0,

where

ϕε2(x⊥, t) =

∫ ∞
−∞
|χε0(z)|2

[
1

2π|x|
∗ (|ψ2χ

ε
0|2)

]
dz

=

∫
R2

[∫
R2

χε0(z)2 χε0(z′)2

2π
√
|x⊥ − x′⊥|2 + (z − z′)2

dzdz′

]
|ψ2(x′⊥, t)|2dx′⊥

:= (Uε2 ∗ |ψ2|2)(x⊥, t), x⊥ ∈ R2, t ≥ 0,(2.11)

with

Uε2 (x⊥) =
1

2π

∫
R2

χε0(z)2 χε0(z′)2√
|x⊥|2 + (z − z′)2

dzdz′ =
1

2π

∫
R2

χ0(z)2χ0(z′)2√
|x⊥|2 + ε2 (z − z′)2

dzdz′

=
1

4π

∫
R2

χ0

(
u+v

2

)2
χ0

(
u−v

2

)2√
|x⊥|2 + ε2u2

dudv, x⊥ ∈ R2.(2.12)

In fact, Eq. (2.10) together with (2.11) is usually called as surface adiabatic model
(SAM) [20]. In addition, multiplying (2.1) by χε0(z) and integrating for z over R,
noting (2.7), we get the initial data for the SAM (2.10)-(2.11) as

(2.13) ψ2(x⊥, 0) =

∫
R
ψ0(x⊥, z)χ

ε
0(z) dz =

√
ε

∫
R
ψ0(x⊥, εu)χ0(u) du, x⊥ ∈ R2.

Letting ε→ 0+ in (2.12) and (2.11) with the help of the dominated convergence
theorem, we get

Uε2 (x⊥)→ 1

2π|x⊥|
:= U2(x⊥), x⊥ ∈ R2,(2.14)

ϕε2(x⊥, t)→ (U2 ∗ |ψ2|2)(x⊥, t) := ϕ2(x⊥, t), x⊥ ∈ R2, t ≥ 0.(2.15)

This immediately suggests the following surface density model (SDM) in 2D

(2.16) i∂tψ2(x⊥, t) =

[
−1

2
∆⊥ + V2(x⊥) +

κ

2
ϕ2(x⊥, t)

]
ψ2, x⊥ ∈ R2, t > 0.
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In fact, the effective potential ϕ2 in (2.15) also satisfies a fractional differential equa-
tion, namely the “square-root of Laplacian” equation:

(−∆⊥)1/2ϕ2(x⊥, t) = |ψ2(x⊥, t)|2, x⊥ ∈ R2, lim
|x⊥|→∞

ϕ2(x⊥, t) = 0, t ≥ 0.(2.17)

Specifically, if the confinement in the z-direction is chosen as a harmonic oscillator
potential, e.g.

Vz(z) =
z2

2
, z ∈ R,

then we have

(2.18) µ0 =
1

2
, χ0(z) =

1

π1/4
e−

z2

2 , z ∈ R.

Plugging (2.18) into (2.12), we obtain [22]

Uε2 (x⊥) =
1

4π2

∫
R2

e−
u2+v2

2√
|x⊥|2 + ε2u2

dudv =
1

(2π)3/2

∫
R

e−
u2

2√
|x⊥|2 + ε2u2

du

=
2

(2π)3/2

∫ ∞
0

e−
u2

2√
|x⊥|2 + ε2u2

du, x⊥ ∈ R2.(2.19)

Taking the Fourier transform in (2.19), we get [22]

Ûε2 (ξ) =
1

2π2

∫
R

e−
ε2s2

2

|ξ|2 + s2
ds =

ε

π2

∫ ∞
0

e−
s2

2

ε2|ξ|2 + s2
ds, ξ ∈ R2.(2.20)

From (2.19) and (2.20), asymptotically, for any fixed ε > 0, we have [22]

Uε2 (x⊥) ≈

{
1

π3/2
√

2 ε
[ln |x⊥|+ ln(2ε) + C] , |x⊥| → 0,

1
2π|x⊥| , |x⊥| → ∞,

x⊥ ∈ R2,(2.21)

Ûε2 (ξ) ≈

{
1

2π|ξ| , |ξ| → 0,
1√

2π3 ε

1
|ξ|2 , |ξ| → ∞,

ξ ∈ R2,(2.22)

where C is a constant. In addition, when ε → 0+ in (2.19) and (2.20) with the help
of the dominated convergence theorem, we get

(2.23) Uε2 (x⊥)→ 1

2π|x⊥|
, Ûε2 (ξ)→ 1

2π|ξ|
, x⊥, ξ ∈ R2.

2.2. From 3D to 1D. When the potential V (x) in (1.1) is chosen as Case II
(1.7), then the linear operator H can be split as

(2.24) H = −1

2
∆⊥ +

1

ε2
V⊥

(x⊥
ε

)
− 1

2
∂zz + V1(z) := Hε

⊥ +Hz =
1

ε2
H⊥̃ +Hz,

where ∆⊥ = ∂xx + ∂yy,x⊥ = ε x̃⊥, ∆⊥̃ = ∂x̃x̃ + ∂ỹỹ and

Hε
⊥ := −1

2
∆⊥ +

1

ε2
V⊥

(x⊥
ε

)
=

1

ε2

[
−1

2
∆⊥̃ + V⊥(x̃⊥)

]
:=

1

ε2
H⊥̃,(2.25)

H⊥̃ = −1

2
∆⊥̃ + V⊥ (x̃⊥) , Hz := −1

2
∂zz + V1 (z) .(2.26)
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For H⊥̃ in (2.26), due to (1.7), we know that the following eigenvalue problem admits
distinct orthonormal eigenfunctions

(2.27) H⊥̃ζ(x̃⊥) =

[
−1

2
∆⊥̃ + V⊥ (x̃⊥)

]
ζ(x̃⊥) = λζ(x̃⊥), x̃⊥ ∈ R2,

with ‖ζ‖2 :=
∫
R2 |ζ(x̃⊥)|2dx̃⊥ = 1. In fact, they can be chosen to form an orthogonal

basis of L2(R2) and be denoted as {ζk(x̃⊥)} with corresponding eigenvalues {λk}
satisfying λ0 < λ1 ≤ λ2 ≤ . . . . Thus (ζεk, λ

ε
k) with

λεk =
λk
ε2
, ζεk(x⊥) =

1

ε
ζk

(
x̃⊥
ε

)
, k = 0, 1, 2, . . .

are orthonormal eigenpairs to the operator Hε
⊥.

Again, here we only consider “pure state” case in the strong confinement direction,
especially the “ground state” case [19, 20]. Similarly, we assume that the initial data
ψ0 in (2.1) satisfies

(2.28) ψ0(x) ≈ ψ1(z)ζε0(x⊥), x ∈ R3, 0 < ε� 1,

noting the scale separation in (2.24), when ε → 0+, the solution ψ to the 3D SPS
(1.1)-(1.2) can be approximated as

(2.29) ψ(x, t) ≈ ψ1(z, t) ζε0(x⊥) e−i λ
ε
0 t, x ∈ R3, t ≥ 0.

Plugging (2.29) into (1.1) and then multiplying by ζε0(x⊥) ei λ
ε
0 t, integrating for x⊥

over R2 and noticing (1.2), formally, we obtain

(2.30) i∂tψ1(z, t) =

[
−1

2
∂zz + V1(z) +

κ

2π
ϕε1(z, t)

]
ψ1, z ∈ R, t > 0,

where

ϕε1(z, t) =

∫
R2

|ζε0(x⊥)|2
[

1

2|x|
∗ (|ψ1ζ

ε
0 |2)

]
dx⊥

=

∫
R

[∫
R2

∫
R2

ζε0(x⊥)2 ζε0(x′⊥)2

2
√
|x⊥ − x′⊥|2 + (z − z′)2

dx⊥dx′⊥

]
|ψ1(z′, t)|2dz′

:= (Uε1 ∗ |ψ1|2)(z, t), z ∈ R, t ≥ 0,(2.31)

with

Uε1 (z) =
1

2

∫
R2

∫
R2

ζε0(x⊥)2 ζε0(x′⊥)2√
|z|2 + |x⊥−x′⊥|2

dx⊥dx′⊥

=
1

2

∫
R2

∫
R2

ζ0(x⊥)2ζ0(x′⊥)2√
|z|2 + ε2|x⊥ − x′⊥|2

dx⊥dx′⊥

=
1

8

∫
R2

∫
R2

ζ0
(
u+v

2

)2
ζ0
(
u−v

2

)2√
|z|2 + ε2|u|2

dudv, z ∈ R.(2.32)

Eq. (2.30) together with (2.31) is named as line adiabatic model (LAM). In addition,
multiplying (2.1) by ζε0(x⊥) and integrating for x⊥ over R2, we get the initial data
for LAM as

(2.33) ψ1(z, 0) =

∫
R2

ψ0(x⊥, z) ζ
ε
0(x⊥) dx⊥ = ε

∫
R2

ψ0(εu, z) ζ0(u) du, z ∈ R.



8 W. Bao, H. Jian, N. J. Mauser and Y. Zhang

Again, if letting ε → 0+ in (2.32) with the help of the dominated convergence
theorem, we get

Uε1 (z)→ 1

2|z|
:= U1(z), z ∈ R.(2.34)

In fact, U1(z) is too singular at z = 0 to be a kernel in 1D. The mathematical
problem to define the convolution with the correct interaction potential for point par-
ticles in 1-D is an indication that the contradiction between the Heisenberg principle
and the complete confinement is even more pronounced in 1-D than in 2-D.

Specifically, if the confinement in the x⊥-plane is chosen as a harmonic oscillator
potential, e.g.

V⊥(x⊥) =
1

2

(
x2 + y2

)
, x⊥ = (x, y) ∈ R2,

then we have

(2.35) λ0 = 1, ζ0(x⊥) =
1√
π
e−

x2+y2

2 .

Plugging (2.35) into (2.32), we obtain

Uε1 (z) =
1

8π2

∫
R2

∫
R2

e−
|u|2
2 e−

|v|2
2√

|z|2 + ε2|u|2
dudv =

1

4π

∫
R2

e−
|u|2
2√

|z|2 + ε2|u|2
du

=
1

4

∫ ∞
0

e−
u
2

√
z2 + ε2u

du =
1

4ε2

∫ ∞
0

e−
u

2ε2

√
z2 + u

du, z ∈ R.(2.36)

Taking the Fourier transform in (2.36), we get [22]

Ûε1 (ξ) =
1

2
√

2π

∫ ∞
0

e−
ε2s
2

|ξ|2 + s
ds =

1

2
√

2π

∫ ∞
0

e−
s
2

ε2|ξ|2 + s
ds, ξ ∈ R.(2.37)

From (2.36) and (2.37), asymptotically, for any fixed ε > 0, we have [22]

Uε1 (z) ≈

{ √
2π
4

(
1
ε −

√
2
π

1
ε2 |z|

)
, |z| → 0,

1
2|z| , |z| → ∞,

z ∈ R,(2.38)

Ûε1 (ξ) ≈

{
1

2
√

2π
[ln 2− γe − 2 ln(ε|ξ|)] , |ξ| → 0,

1√
2π ε2|ξ|2 , |ξ| → ∞, ξ ∈ R,(2.39)

where γe is the Euler-Mascheroni constant. In addition, when ε → 0+ in (2.36) and
(2.37) with the help of the dominated convergence theorem, we get

(2.40) Uε1 (z)→ 1

2|z|
, Ûε1 (ξ)→∞, z, ξ ∈ R.

2.3. Models in a unified formulation. The 2D SAM (2.10)-(2.11) with (2.19)
(or (2.12)) and SDM (2.16)-(2.17) and 1D LAM (2.30)-(2.31) with (2.36) (or (2.32))
can be written in a unified formulation as a general nonlinear Schrödinger equation
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(GNLS), which is the same as the SPS (1.3)-(1.4) with different interaction kernels in
different cases

i ∂tψ(x, t) =

[
−1

2
∆ + V (x) + β ϕ

]
ψ, x ∈ Rd, t > 0,(2.41)

ϕ(x, t) = Ud ∗ |ψ|2, x ∈ Rd, t ≥ 0,(2.42)

where x = (x, y) and β = κ
2 if d = 2 and x = x and β = κ

2π if d = 1, and

Ud(x) =


Uε2 (x),

1
2π|x| ,

Uε1 (x),

⇔ Ûd(ξ) =


ε
π2

∫∞
0

e−s2/2

ε2|ξ|2+s2 ds, d = 2 & SAM,

1
2π|ξ| , d = 2 & SDM,

1
2
√

2π

∫∞
0

e−s/2

ε2|ξ|2+sds, d = 1 & LAM.

(2.43)

For studying the dynamics of GLSE, the following initial condition is usually given

(2.44) ψ(x, 0) = ψ0(x), x ∈ Rd.

2.4. Conservation laws and ground states. Two important conserved quan-
tities for the GNLS (2.41)-(2.42) are the mass or normalization

(2.45) N(t) := N(ψ(·, t)) =

∫
Rd

|ψ(x, t)|2 dx ≡
∫
Rd

|ψ0(x)|2 dx, t ≥ 0,

and the energy

E(t) := E(ψ(·, t)) =

∫
Rd

[
1

2
|∇ψ(x, t)|2 +

(
V (x) +

β

2
(Ud ∗ |ψ|2)

)
|ψ(x, t)|2

]
dx

=

∫
Rd

[
1

2
|∇ψ(x, t)|2 +

(
V (x) +

β

2
ϕ

)
|ψ(x, t)|2

]
dx ≡ E(0), t ≥ 0.(2.46)

The ground state φg := φg(x) of the GNLS (2.41)-(2.42) is usually defined as
the minimizer of the energy functional over the unit sphere S = {φ := φ(x) | ‖φ‖2 =
1, E(φ) <∞}:

(2.47) Eg := E(φg) = min
φ∈S

E(φ),

where

E(φ) =

∫
Rd

[
1

2
|∇φ(x)|2 +

(
V (x) +

β

2
ϕ(x)

)
|φ(x)|2

]
dx, ϕ(x) = Ud ∗ |φ|2.

It is easy to see that the Euler-Lagrange equation of the above non-convex minimiza-
tion problem is the following nonlinear eigenvalue problem, i.e., find µ ∈ R and φ such
that

(2.48) µφ(x) =

[
−1

2
∆ + V (x) + β ϕ

]
φ(x), ϕ(x) = Ud ∗ |φ|2, x ∈ Rd,

where the eigenvalue µ (or chemical potential) can be computed as

µ := µ(φ) =

∫
Rd

[
1

2
|∇φ(x)|2 +

(
V (x) + β (Ud ∗ |φ|2)

)
|φ|2

]
dx

= E(φ) +
β

2

∫
Rd

(Ud ∗ |φ|2) |φ|2 dx = E(φ) +
β

2

∫
Rd

ϕ(x)|φ(x)|2 dx.
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For existence and uniqueness of the ground state to (2.47), we refer to [4, 5];
for well-posedness and dynamical properties of the SPS (1.3)-(1.4) and the GNLS
(2.41)-(2.42), we refer to [4, 5, 23, 38] and references therein; and for analytical and
asymptotic analysis on dimension reduction from the 3D SPS to 2D SAM and SDM,
we refer to [19] and references therein.

3. Numerical methods. In order to verify numerically the dimension reduction
from the 3D SPS (1.1)-(1.2) to the 2D SAM (2.10)-(2.11) with (2.19) and SDM (2.16)-
(2.17) and 1D LAM (2.30)-(2.31) with (2.36), to find numerically the convergence rates
for the dimension reduction, and to simulate numerically low dimensional quantum
systems based on the 2D and 1D models, in this section, we briefly introduce numerical
methods for computing ground states and dynamics of the 2D SAM and SDM and
1D LAM as well as 2D SPS models. For efficient and accurate numerical methods for
computing ground states and dynamics of the SPS (1.3)-(1.4) in 3D and 1D, we refer
to [26,49] and references therein. In practical computations, the whole space problems
(2.41)-(2.42) and (2.47) are usually truncated into a bounded computational domain
Ω ⊂ Rd which is usually chosen as an interval [a, b] in 1D, a rectangle [a, b]× [c, d] in
2D and a box [a, b] × [c, d] × [e, f ] in 3D. Choose a time step τ := ∆t > 0 and mesh
sizes hx = b−a

J , hy = d−c
K and hz = f−e

L with J , K and L positive even integers, and
denote time steps as tn = n τ for n = 0, 1, . . ., and grid points as xj = a + j hx for
j = 0, 1, . . . , J , yk = c+ k hy for k = 0, 1, . . . ,K, and zl = e+ l hz for l = 0, 1, . . . , L.

3.1. A method for computing ground states. For computing the ground
states of (2.47), we adapt the gradient flow with discrete normalization (GFDN) which
has been widely and successfully used for computing ground states of the Gross-
Pitaevskii equation (GPE) with application to Bose-Einstein condensation (BEC)
[6, 7]. From time t = tn to t = tn+1, applying the steepest descent method to the
energy functional E(φ) in (2.46) without the constraint (2.45), and then projecting
the solution back to the unit sphere S at the end of each time interval [tn, tn+1] to
ensure the constraint (2.45), we obtain the following gradient flow for φ := φ(x, t)
with discrete normalization:

∂tφ(x, t) = −1

2

δE(φ)

δφ
=

[
1

2
∆− V (x)− βϕ

]
φ, x ∈ Ω, tn ≤ t < tn+1,(3.1)

ϕ(x, t) = Ud ∗ |φ|2 =

∫
Rd

Ud(x− u)ρ(u, t) du, x ∈ Ω, tn ≤ t < tn+1,(3.2)

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(x, t−n+1)‖
, x ∈ Ω, n ≥ 0,(3.3)

where φ(x, t±n ) := limt→t±n φ(x, t) and

(3.4) ρ(x, t) =

{
|φ(x, t)|2, x ∈ Ω,
0, otherwise,

x ∈ Rd.

The initial data is given as φ(x, 0) = φ0(x) satisfying ‖φ0‖2 =
∫

Ω
|φ0(x)|2dx = 1. The

boundary condition to (3.1) will be chosen as either periodic boundary condition or
homogeneous Dirichlet boundary condition based on the kernel function Ud defined
in (2.43) or (1.5), which will be specified clearly below. The gradient flow (3.1)
with periodic boundary condition and homogeneous Dirichlet boundary condition
will be discretized by the backward Euler Fourier and sine pseudospectral methods,
respectively [6]. The project step (3.3) will be discretized by summation [6]. The
discretization to (3.2) will be presented in details in the following subsections.
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3.2. A method for computing dynamics. For computing the dynamics, we
adapt the time-splitting spectral method (TSSP) which has been widely and suc-
cessfully used for the nonlinear Schrödinger equation (NLSE) with many applica-
tions [10,11]. From t = tn to t = tn+1, the problem (2.41) will be truncated on Ω and
solved in two steps. First we solve the free Schrödinger equation

(3.5) i ∂tψ(x, t) = −1

2
∆ψ(x, t), x ∈ Ω, tn ≤ t ≤ tn+1,

for a time step of length τ , and then we solve for x ∈ Ω and tn ≤ t ≤ tn+1

(3.6) i ∂tψ(x, t) = [V (x) + βϕ(x, t)]ψ(x, t), ϕ(x, t) = Ud ∗ ρ,

for the same time step with

(3.7) ρ(x, t) =

{
|ψ(x, t)|2, x ∈ Ω,
0, otherwise,

x ∈ Rd.

Again, the boundary condition to (3.5) will be chosen as either periodic boundary
condition or homogeneous Dirichlet boundary condition based on the kernel function
Ud defined in (2.43) or (1.5), which will be specified clearly below. Then Eq. (3.5)
is discretized in space by Fourier or sine pseudospectral methods and then integrated
exactly in time. If the homogeneous Dirichlet boundary condition is used to (3.5),
then we choose the sine pseudospectral method to discretize it; otherwise, the Fourier
pseudospectral method is adapted if the periodic boundary condition is used to (3.5).
For more details, we refer to [5, 9–11] and references therein.

On the other hand, we notice that on each time interval [tn, tn+1], the problem
(3.6) leaves |ψ(x, t)| and hence ϕ(x, t) invariant [9–11], i.e. |ψ(x, t)| = |ψ(x, tn)| and
ϕ(x, t) = ϕ(x, tn) for all times tn ≤ t ≤ tn+1. Thus, for t ∈ [tn, tn+1], Eq. (3.6)
reduces to

i ∂tψ(x, t) = [V (x) + βϕ(x, tn)]ψ(x, t), ϕ(x, tn) = Ud ∗ ρn,(3.8)

for x ∈ Ω and tn ≤ t ≤ tn+1 with

(3.9) ρn(x) =

{
|ψ(x, tn)|2, x ∈ Ω,
0, otherwise,

x ∈ Rd.

Integrating the first equation in (3.8) in time gives

ψ(x, t) = ψ(x, tn) e−i[V (x)+βϕ(x,tn)](t−tn), x ∈ Ω, tn ≤ t ≤ tn+1.(3.10)

In the following subsections, we will discuss in details the approximation of ϕ in
(3.8). The approximation of ϕ in (3.2) can be done in a similar way and thus we omit
the details for brevity.

We remark here that, in practice, we always use the second-order Strang splitting
method [46] to combine the two steps in (3.5) and (3.6). That is, from time t = tn to
t = tn+1, we (i) evolve (3.5) for half time step τ/2 with initial data given at t = tn;
(ii) evolve (3.6) for one step τ starting with the new data; and (iii) evolve (3.5) for
half time step τ/2 again with the newer data. For a more general discussion of the
splitting method, we refer the reader to [5, 48].
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3.3. Computation of ϕ(x, tn) in (3.8). Due to the convolution in (3.8), it is
natural to consider using the Fourier transform to compute ϕ(x, tn). However, from

(2.43) or (1.5) and (2.45), we know that limξ→0 Ûd(ξ) = ∞ and ρ̂n(ξ = 0) 6= 0. As
noted for simulating dipolar BECs in 3D [5], there is a numerical locking phenomena,
i.e. numerical errors will be bounded below no matter how small the mesh size is,
when one uses the Fast Fourier transform (FFT) to evaluate ϕ(x, tn) in (3.8) directly
through the Fourier transform. Here we present a method to evaluate ϕ(x, tn) in (3.8)
through homogenizing the mean value of ρ(x, tn) := |ψ(x, tn)|2, which is a constant
independent of n, to zero and then using FFT to compute it.

Denote

(3.11) Gn(x) = ρn(x)− IΩ

|Ω|
C0, ⇔ ρn(x) = Gn(x) +

IΩ

|Ω|
C0, x ∈ Rd,

where C0 :=
∫

Ω
|ψ(x, tn)|2dx ≡

∫
Ω
|ψ0(x)|2dx for n ≥ 0, IΩ is the characteristic

function of the domain Ω and |Ω| is the length/area/volume of Ω in 1D/2D/3D,

respectively. Then it is easy to see that Ĝn(ξ = 0) = 0 and we have

(3.12) ϕ(x, tn) = Ud ∗ ρn = Ud ∗Gn + C0Ud ∗
IΩ

|Ω|
:= P (x, tn) + C0Q(x), x ∈ Ω,

where P (x, tn) can be evaluated via FFT and Q(x) can be evaluated analytically. Here
we only show how to compute them in 1D, extensions to 2D and 3D are straightforward
and we omit them here for brevity. When d = 1, we have

(3.13) Q(x) := U1 ∗
IΩ

|Ω|
=

∫
R
U1(x− u)

IΩ

|Ω|
du =

1

b− a

∫ b

a

U1(x− u)du, a ≤ x ≤ b.

The above definite integral can be computed either analytically if one can, and oth-
erwise numerically via numerical quadrature, e.g. composite Gauss quadratures or
Simpson’s rule. To approximate P (x, tn), we make the (approximate) ansatz

(3.14) P (x, tn) =

J/2−1∑
p=−J/2

P̂ fp e
iµp(x−a), a ≤ x ≤ b,

where µp = 2pπ
b−a for p = −J2 , . . . ,

J
2 − 1 and P̂ fp is the Fourier coefficient of P (x, tn)

corresponding to the frequency p. We then approximate the convolution in P (x, tn)
by a discrete convolution and take its discrete Fourier transform to obtain

(3.15) P̂ fp =
√

2π Û1(µp) · (|̂ψn|2)fp , p = −J
2
, . . . ,

J

2
− 1,

where (|̂ψn|2)fp is the Fourier coefficient (through discrete Fourier transform) corre-
sponding to the frequency p of the function |ψ(x, tn)|2 defined on the grid points

of Ω and Û1(µp) is given in (2.43) or (1.5) which can be evaluated analytically or
numerically via numerical quadratures. If ϕ(x, tn) is approximated this way, we usu-
ally use periodic boundary condition to (3.5) and (3.1) and discretize them by the
time-splitting Fourier pseudospectral (TSFP) method [5] and backward Euler Fourier
pseudospectral (BEFP) method [5, 6], respectively.
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3.4. Another way to compute ϕ(x, tn) in 2D SDM. For 2D SDM, the func-
tion ϕ(x, tn) in (3.8) also satisfies the square-root-Poisson equation in (2.17) which can
be truncated on the computational domain Ω with homogeneous Dirichlet boundary
condition as

(−∇2)1/2ϕ(x, tn) = |ψ(x, tn)|2, x ∈ Ω; ϕ(x, tn)|∂Ω = 0.(3.16)

Based on this differential formulation, another way to compute ϕ(x, tn) is to discretize
the above problem by using a sine pseudospectral method in which the 0-mode is
avoided in numerical discretization.

Denote the index set TJK = {(p, q) | 1 ≤ p ≤ J − 1, 1 ≤ q ≤ K − 1} and assume

ϕ(x, tn) =

J−1∑
p=1

K−1∑
q=1

ϕ̂spq sin(µ1
p(x− a)) sin(µ2

q(y − c)), x ∈ Ω,(3.17)

where ϕ̂spq is the sine transform of ϕ(x, tn) at frequency (p, q) and

µ1
p =

pπ

b− a
, µ2

q =
qπ

d− c
, (p, q) ∈ TJK .(3.18)

Substituting (3.17) into (3.16) and taking sine transform on both sides, we obtain

ϕ̂spq =
(|̂ψn|2)spq[

(µ1
p)

2 + (µ2
q)

2
]1/2 , (p, q) ∈ TJK ,(3.19)

where (|̂ψn|2)spq is the sine transform coefficient (through discrete sine transform) cor-
responding to the frequency (p, q) of the function |ψ(x, tn)|2 defined on the grid points
of Ω. If ϕ(x, tn) is approximated in this way, we usually use homogeneous Dirichlet
boundary condition to (3.5) and (3.1) and discretize them by the time-splitting sine
pseudospectral (TSFP) method [5] and backward Euler sine pseoduspectral (BESP)
method [9–12], respectively.

Remark 3.1. For general confining potentials Vz in (1.6) and V⊥ in (1.7) other
than harmonic potential, then one might not find explicit solutions of the first eigen-
function to the eigenvalue problems (2.6) and (2.27). In this situation, one can solve
the eigenvalue problems numerically and obtain numerically the first eigenfunctions
χ0(z̃) and ζ0(x̃⊥) to (2.6) and (2.27), respectively. Then the rest dimension reduction
and numerical methods can be carried out similarly.

4. Numerical results. In this section, we report numerical results on conver-
gence rates of the dimension reduction from 3D SPS to 2D SAM and SDM and 1D
LAM, comparison between different models such as SPS, SAM and SDM in 2D and
SPS and LAM in 1D, and ground states and dynamics of 2D SAM and SDM and 1D
LAM under different parameters by using the efficient and accurate numerical meth-
ods presented in the previous section. Denote φg := φg(x, y, z) and ψ := ψ(x, y, z, t)
be the ground state and the solution of the dynamics at time t, respectively, of the
3D SPS (1.1)-(1.2), which are computed numerically on a computational domain
Ω = [−8, 8]3. In all computations, the time step is taken as τ = 0.01 for computing
ground states and τ = 0.0001 for computing dynamics.
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4.1. Convergence rates from 3D SPS to 2D SAM and SDM. In order to
do so, we take the external potential in (1.6) for the 3D SPS (1.1)-(1.2) as

Vz(z) =
z2

2
, V2(x, y) =

1

2

(
x2 + y2

)
, V (x, y, z) =

1

2

(
x2 + y2 +

z2

ε4

)
.

Let φ
(2)
g := φ

(2)
g (x, y) be the ground state of the 2D SAM or SDM and ψ2 :=

ψ2(x, y, t) be the solution of the dynamics of the 2D SAM or SDM with initial data

ψ0(x, y) = e−
x2+y2

2 in (2.44) at time t, which are computed numerically on a com-
putational domain Ω = [−16, 16]2 with mesh sizes hx = hy = 1/16. Based on this,

the initial data ψ0 in (2.1) for 3D SPS is chosen as ψ0(x, y, z) = 1
π1/4
√
ε
e−

x2+y2

2 e−
z2

2ε2

and the 3D SPS is solved with mesh sizes hx = hy = 1
8 and hz = 1

128 . Define

φ
(p)
g (x, y) =

[∫
R |φg(x, y, z)|

2dz
]1/2

, ρ(p)(x, y, t) =
∫
R |ψ(x, y, z, t)|2dz and χ(p)(z) =[∫

R |φg(x, y, z)|
2dxdy

]1/2
be the projections of φg and ρ over (x, y)-plane and φg over

z-axis, respectively. Similarly, define ρ(p)(·, t) =
∫
R |ψ(x, y, z, t)|2dz and ρ2(·, t) =

|ψ2(x, y, t)|2.

Tabs. 4.1 and 4.2 list errors of ‖φg − φ(2)
g χε0(z)‖l2 and ‖χ(p) −χε0‖l2 , respectively,

which demonstrates convergence rates from 3D SPS to 2D SAM in terms of ground

states with κ = ±5 for different ε, and Tab. 4.3 shows errors of ‖φ(p)
g − φ(2)

g ‖l2 which
demonstrates convergence rates from 3D SPS to 2D SDM and SPS in terms of ground
states with κ = ±5 for different ε. In addition, Tabs. 4.4 and 4.5 list errors of
‖ρ(p) − ρ2‖l1 for t = 1, which demonstrates convergence rates from 3D SPS to 2D
SAM and SDM and SPS, respectively, in terms of dynamics with κ = ±5 for different
ε.

Table 4.1: Convergence from 3D SPS to 2D SAM on ground states in terms of ‖φg −
φ

(2)
g χε0(z)‖l2 in §4.1.

ε 1 1/2 1/4 1/8 1/16 1/32

κ = 5 1.81E-02 3.80E-03 8.16E-04 8.81E-05 1.21E-05 1.64E-06
rate — 2.25 2.22 3.21 2.86 2.88
κ = −5 2.01E-02 4.24E-03 9.98E-04 1.11E-04 1.57E-05 2.17E-06
rate — 2.25 2.09 3.17 2.82 2.86

Table 4.2: Convergence from 3D SPS to 2D SAM on ground states in terms of ‖χ(p)−
χε0‖l2 in §4.1.

ε 1 1/2 1/4 1/8 1/16 1/32

κ = 5 1.79E-02 3.53E-03 5.71E-04 7.85E-05 1.06E-05 1.35E-06
rate — 2.34 2.63 2.86 2.89 2.97
κ = −5 1.99E-02 3.94E-03 6.78E-04 9.88E-05 1.37E-05 1.81E-06
rate — 2.34 2.54 2.78 2.85 2.92

From Tabs. 4.1-4.5 and additional results not shown here for brevity, we can
draw the following conclusions: Under harmonic confinement with strongly confined
in z-direction, the 3D SPS converges to 2D SAM and SDM cubically (cf. Tabs. 4.1,
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Table 4.3: Convergence from 3D SPS to 2D SDM (top) and SPS (bottom) on ground

states in terms of ‖φ(p)
g − φ(2)

g ‖l2 in §4.1.

ε 1/2 1/4 1/8 1/16 1/32

κ = 5 2.39E-02 1.45E-02 7.85E-03 4.23E-03 2.25E-03
rate — 0.72 0.89 0.89 0.91
κ = −5 2.76E-02 1.75E-02 1.05E-02 5.74E-03 3.06E-03
rate — 0.66 0.74 0.87 0.91

κ = 5 6.49E-02 5.57E-02 4.91E-02 4.56E-02 4.37E-02
κ = −5 5.86E-02 4.85E-02 4.16E-02 3.70E-02 3.43E-02

Table 4.4: Convergence from 3D SPS to 2D SAM on dynamics in terms of ‖ρ(p)−ρ2‖l1
at t = 1 in §4.1.

ε 1 1/2 1/4 1/8

κ = 5 1.34E-02 5.67E-03 6.91E-04 8.92E-05
rate — 1.48 3.07 2.98
κ = −5 2.07E-02 8.19E-03 1.44E-03 1.39E-04
rate — 1.38 2.37 3.25

4.2 & 4.4) and linearly (cf. Tabs. 4.3 & 4.5 top), respectively, in terms of ε on both
ground states and dynamics. However, the 3D SPS doesn’t converge to 2D SPS when
ε → 0 (cf. Tabs. 4.3 & 4.5 bottom). Rigorous mathematical justification for these
observation are ongoing. Based on these observations, if one wants to consider the
dynamics of electrons trapped in the plane through confinement, either 2D SDM or
SAM are correct models to be adapted, and the 2D SPS might not be a good physical
model in this situation.

4.2. Convergence rates from 3D SPS to 1D LAM. In order to do so, we
take the external potential in (1.7) for the 3D SPS (1.1)-(1.2) as

V1(z) =
z2

2
, V⊥(x, y) =

1

2

(
x2 + y2

)
, V (x, y, z) =

1

2

(
z2 +

x2 + y2

ε4

)
.

Let φ
(1)
g := φ

(1)
g (z) be the ground state of the 1D LAM and ψ1 := ψ1(z, t) be the

solution of the dynamics of the 1D LAM with initial data ψ0(z) = e−
z2

2 in (2.44) at
time t, which are computed numerically on a computational domain Ω = [−16, 16]
with mesh size hz = 1/16. Based on this, the initial data ψ0 in (2.1) for 3D SPS is

chosen as ψ0(x, y, z) = 1√
πε
e−

x2+y2

2ε2 e−
z2

2 and the 3D SPS is solved with mesh sizes as

hx = hy = 1
32 and hz = 1

8 . Define ρ(p)(z, t) =
∫
R2 |ψ(x, y, z, t)|2dxdy be the projection

of ρ over z-axis and let ρ1(·, t) = |ψ1(z, t)|2.

Tabs. 4.6 and 4.7 list errors of ‖φg − φ(1)
g ζε0(x, y)‖l2 and ‖ρ(p) − ρ1‖l1 at t = 1,

which demonstrates convergence rates from 3D SPS to 1D LAM in terms of ground
states and dynamics, respectively, with κ = ±5 for different ε.

From Tabs. 4.6 and 4.7 and additional relevant results not shown here for brevity,
we can draw the following conclusions: Under harmonic confinement with strongly
confined in (x, y)-plane, the 3D SPS converges to 1D LAM quadratically (cf. Tab.
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Table 4.5: Convergence from 3D SPS to 2D SDM (top) and SPS (bottom) on dynamics
in terms of ‖ρ(p) − ρ2‖l1 at t = 1 in §4.1.

ε 1/4 1/8 1/16 1/32

κ = 5 2.63E-01 1.45E-01 7.60E-02 3.90E-02
rate — 0.86 0.93 0.96
κ = −5 5.30E-01 3.17E-01 1.77E-01 9.36E-02
rate — 0.74 0.85 0.91

κ = 5 7.12E-2 5.72E-2 1.21E-1 1.58E-1
κ = −5 1.16 9.48E-1 8.07E-1 7.24E-1

Table 4.6: Convergence from 3D SPS to 1D LAM on ground states in terms of ‖φg −
φ

(1)
g ζε0(x, y)‖l2 in §4.2.

ε 1/
√

5 1/
√

10 1/
√

20 1/
√

40

κ = 5 6.66E-03 3.49E-03 1.79E-03 8.97E-04
rate — 1.86 1.93 1.99
κ = −5 7.36E-03 4.04E-03 2.19E-03 1.18E-03
rate — 1.73 1.77 1.78

4.6) in terms of ε on both ground states and dynamics. Again, rigorous mathematical
justification for these observations are ongoing.

4.3. Comparison between 2D SAM, SDM and SPS. In order to do so, we
take d = 2 in (2.41) for the 2D SAM, SDM and SPS with the potential chosen as
V (x, y) = 1

2

(
x2 + y2

)
, and choose the initial data in (2.44) for computing dynamics

as ψ0(x, y) = e−
x2+y2

2 .

Denote now φg := φg(x, y) and ψ := ψ(x, y, t) be the ground state and the
solution of the dynamics at time t, respectively, of the 2D SAM, which are computed
numerically on a computational domain Ω = [−16, 16]2 with mesh sizes hx = hy = 1

16 .

Similarly, let φ
(2)
g := φ

(2)
g (x, y) and ψ2 := ψ2(x, y, t) be the ground state and the

solution of the dynamics at time t = 1 of the 2D SDM or SPS, which again are
computed numerically on the same domain with the same mesh sizes and time step
as well as the same initial data for dynamics as for 2D SAM.

Tabs. 4.8 and 4.9 list errors of ‖φg − φ(2)
g ‖l2 and ‖|ψ|2 − |ψ2|2‖l1 at t = 1 which

demonstrates convergence rates from 2D SAM to SDM in terms of ground states and
dynamics, respectively, with κ = ±5 for different ε. In addition, Fig. 4.1 plots the
right half profile of the ground state φg(x, 0) (due to symmetric property) of 2D SDM
and SPS for different β, and Fig. 4.2 compares the ground state φg(x, 0) and φg(0, y)of
2D SDM and SPS with β = 50 and potential V = 1

2 (x2 + 4y2).

From Tabs. 4.8 and 4.9 and Figs. 4.1 and 4.2 as well as additional results not
shown here for brevity, we can draw the following conclusions: When ε → 0, the
2D SAM converges linearly to SDM (cf. Tabs. 4.8 and 4.9) on both ground states
and dynamics. Again, rigorous mathematical justification for these observation are
ongoing. In addition, the profiles of the ground states from 2D SDM and SPS under
the same potential and interaction parameter differ significantly, especially in the
center and the tail (cf. Figs. 4.1 & 4.2).
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Table 4.7: Convergence from 3D SPS to 1D LAM on dynamics in terms of ‖ρ(p)−ρ1‖l1
at t = 1 in §4.2.

ε 1/
√

10 1/
√

20 1/
√

30 1/
√

40 1/
√

50

κ = 5 1.02E-03 5.84E-04 4.11E-04 3.27E-04 2.71E-04
rate — 1.61 1.73 1.59 1.68
κ = −5 1.65E-03 1.08E-03 8.29E-04 6.84E-04 5.83E-04
rate — 1.22 1.30 1.34 1.43

Table 4.8: Convergence from 2D SAM to SDM on ground states in terms of ‖φg −
φ

(2)
g ‖l2 in §4.3.

ε 1 1/2 1/4 1/8 1/16 1/32

κ = 5 3.37E-02 2.28E-02 1.38E-02 7.66E-03 4.01E-03 2.01E-03
rate — 0.56 0.73 0.85 0.93 1.00
κ = −5 4.01E-02 2.85E-02 1.80E-02 1.04E-02 5.68E-03 2.95E-03
rate — 0.50 0.66 0.79 0.88 0.95

4.4. Comparison between 1D LAM and SPS. In order to do so, we take

d = 1 in (2.41) for the 1D LAM and SPS with the potential chosen as V (x) = x2

2 ,

and choose the initial data in (2.44) for computing dynamics as ψ0(x) = 1
π1/4 e

− x2

2 .
Denote now φg := φg(x) and ψ := ψ(x, t) be the ground state and the solution

of the dynamics at time t, respectively, of the 1D LAM or SPS which are computed
numerically on a computational domain Ω = [−16, 16] with mesh size hx = 1

16 , and
define the density ρ(x, t) := |ψ(x, t)|2. Figs. 4.3 and 4.4 show the ground state φg(x)
and the density ρ(x, t) at t = 1 of the dynamics, respectively, of 1D SPS and 1D LAM
with different ε.

From Figs. 4.3 and 4.4 as well as additional results not shown here for brevity, we
can draw the following conclusions: The profiles of the ground states and dynamics
from 1D SPS and LAM under the same potential and interaction parameter differ
significantly, especially in the center and the tail (cf. Figs. 4.3 and 4.4).

4.5. Ground states and dynamics of electrons in 2D via SDM. Here we
present some numerical results on the ground states and dynamics of electrons in
2D with application to graphene through the 2D SDM (2.16)-(2.17) which is much
cheaper than solving the 3D SPS.

For computing the ground states, we take harmonic and harmonic + honeycomb
[24] potentials defined as

V (x, y) =
1

2
(x2 + 4 y2),(4.1)

V (x, y) =
1

2

(
x2 + y2

)
+ V0 [cos(b1 · x) + cos(b2 · x) + cos((b1+b2) · x)] ,(4.2)

with b1 = π
4 (
√

3, 1), b2 = π
4 (−
√

3, 1) and V0 a tunable constant, respectively. Let
φg := φg(x, y) be the ground state which is computed on a computational domain
Ω = [−16, 16]2 with mesh size hx = hy = 1

16 . Define the energy Eg := E(φg), kinetic
energy Egkin := 1

2

∫
R2 |∇φg(x)|2 dx, potential energy Egpot :=

∫
R2V (x) |φg(x)|2 dx, in-

teraction energy Egint := β
2

∫
R2(U2∗|φg|2) |φg(x)|2dx; variances σgx :=

∫
R2 x

2|φg(x)|2 dx
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Fig. 4.1: Plots of the ground state φg(x, 0) of 2D SDM (left) and SPS (right) for
β = −30, −20, −10, −5, 5, 10, 20, 30 (with decreasing peaks) in §4.3.
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Fig. 4.2: Plots of the ground states φg(x, 0)(left) and φg(0, y)(right) of 2D SDM (blue
solid line) and SPS (red dashed line) for β = 50 in §4.3.
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Fig. 4.3: Plots of the ground state φg(x) of 1D SPS (red dashed line) and LAM
(blue solid lines) for: (left) κ = 5 and ε = 1/2, 1/4, 1/8, 1/16, 1/32 and 1/64 (with
decreasing peaks) in LAM; (right) κ = −5 and ε = 1/2, 1/8, 1/32 and 1/128 (with
increasing peaks) in LAM in §4.4.
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Table 4.9: Convergence from 2D SAM to SDM on dynamics in terms of ‖|ψ|2−|ψ2|2‖l1
at t = 1 in §4.3.

ε 1 1/2 1/4 1/8 1/16 1/32

κ = 5 5.50E-01 3.67E-01 2.19E-01 1.21E-01 6.35E-02 3.25E-02
rate — 0.58 0.75 0.86 0.92 0.97
κ = −5 8.74E-01 6.36E-01 4.12E-01 2.42E-01 1.33E-01 6.99E-02
rate — 0.46 0.63 0.77 0.87 0.93
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Fig. 4.4: Plots of the density ρ(x, t = 1) of the dynamics of 1D SPS (red dashed line)
and LAM (blue solid lines) for: (left) κ = 5 and ε = 1/2, 1/4, 1/8, 1/16, 1/32 and
1/64 (with decreasing peaks) in LAM; (right) κ = −5 and ε = 1/2, 1/8, 1/32 and
1/128 (with increasing peaks) in LAM in §4.4.

and σgy :=
∫
R2 y

2|φg(x)|2 dx in x- and y-direction, respectively; and density at the ori-
gin ρg(0) := |φg(0, 0)|2. Tab. 4.10 lists these quantities of the 2D SDM with harmonic
potential (4.1) for different β. In addition, Fig. 4.5 depicts the ground states of 2D
SDM with β = 5 and harmonic + honeycomb potential (4.2) for different V0.

Table 4.10: Different quantities of the ground state in 2D SDM with harmonic poten-
tial (4.1) for different β in §4.5.

β Eg Egkin Egpot Egint σgx σgy ρg(0)

−50 -2.989 3.554 0.181 -6.723 0.075 0.071 1.619
−10 0.874 0.942 0.604 -0.672 0.353 0.214 0.784
−5 1.198 0.834 0.676 -0.312 0.423 0.233 0.723
5 1.783 0.684 0.824 0.274 0.582 0.266 0.627
10 2.050 0.634 0.896 0.520 0.668 0.281 0.589
50 3.830 0.442 1.432 1.956 1.356 0.377 0.424

From Tab. 4.10 and Fig. 4.5 as well as additional results not shown here for
brevity, for the ground states of the 2D SDM under harmonic potential (4.1), when β
increases, the energy, kinetic energy, potential energy, interaction energy and variances
in x- and y-direction increase, while the density at the origin decreases (cf. Tab.
4.10). When V0 becomes larger, the electrons concentrate at the Dirac points of the
honeycomb potential (4.2) (cf. Fig. 4.5).
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Fig. 4.5: Contour plots of the ground states of 2D SDM with harmonic + honeycomb
potential (4.2) for different V0 in §4.5.

For computing the dynamics, we take the initial data in (2.44) as ψ0(x, y) =

e−(x2+y2)/2 and consider optical lattice and honeycomb [24] potentials defined as

V (x, y) = 10
[
sin(πx)2 + sin(πy)2

]
,(4.3)

V (x, y) = 10 [cos(b1 · x) + cos(b2 · x) + cos((b1+b2) · x)] ,(4.4)

respectively. Let ψ := ψ(x, y, t) the solution of the 2D SAM which is computed
numerically on a computational domain Ω = [−16, 16]2 with mesh sizes hx = hy = 1

16 ,
and denote the density as ρ := ρ(x, y, t) = |ψ(x, y, t)|2. Figs. 4.6 and 4.7 show time
evolution of the density ρ of 2D SDM with the optical lattice and honeycomb potentials
(4.3) and (4.4), respectively.

From Figs. 4.6 & 4.7 and additional results not shown here for brevity, we can
see that the 2D SDM describes correct and very interesting dynamics of electrons
confined in 2D.

5. Conclusions. Dimension reduction was presented from the three dimensional
(3D) Schrödinger equation with the Coulomb interaction or the Schrödinger-Poisson
system (SPS) under an anisotropic external potential to two dimensions (2D) and one
dimension (1D) under strongly confinement in z-direction and (x, y)-plane, respec-
tively. In 2D, we obtained the 2D surface adiabatic model (SAM) and surface density
model (SDM), and respectively, in 1D, we got line adiabatic model (LAM). Efficient
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Fig. 4.6: Time evolution of the density ρ of the 2D SDM with the optical lattice
potential (4.3) in §4.5.

and accurate numerical methods were presented for computing the ground states and
dynamics of the 2D SAM and SDM and 1D LAM as well as 2D SPS by focusing on
how to evaluate the effective interaction potential efficiently and accurately. Conver-
gence rates were studied and observed numerically in terms of the ground states and
dynamics from 3D SPS to 2D SAM and SDM and 1D LAM as well as from 2D SAM
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Fig. 4.7: Time evolution of the density ρ of the 2D SDM with the honeycomb potential
(4.4) in §4.5.

to SDM, which confirmed those partial rigorous mathematical results in the litera-
tures [17–19]. Our numerical results provided completed results for all cases. Finally
we applied the 2D SDM for studying numerically the ground states and dynamics of
electrons confined in the plane under harmonic, optical lattice and honeycomb po-
tentials. Our results demonstrated that the 2D SDM or SAM describes the correct
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physics of the ground states and dynamics of electrons confined in 2D, while the 2D
SPS might not be a good model in this situation.
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Schrödinger equation with a strongly anisotropic harmonic potential, SIAM J. Math. Anal.,
37 (2005), pp. 189–199.



24 W. Bao, H. Jian, N. J. Mauser and Y. Zhang
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