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Abstract

We introduce an accurate and efficient method for the numerical evaluation of nonlocal potentials, including
the 3D/2D Coulomb, 2D Poisson and 3D dipole-dipole potentials. Our method is based on a Gaussian-sum
approximation of the singular convolution kernel combined with a Taylor expansion of the density. Starting
from the convolution formulation of the nonlocal potential, for smooth and fast decaying densities, we make
a full use of the Fourier pseudospectral (plane wave) approximation of the density and a separable Gaussian-
sum approximation of the kernel in an interval where the singularity (the origin) is excluded. The potential is
separated into a regular integral and a near-field singular correction integral. The first is computed with the
Fourier pseudospectral method, while the latter is well resolved utilizing a low-order Taylor expansion of the
density. Both parts are accelerated by fast Fourier transforms (FFT). The method is accurate (14-16 digits),
efficient (O(N logN) complexity), low in storage, easily adaptable to other different kernels, applicable for
anisotropic densities and highly parallelizable.

Keywords: nonlocal potential solver, convolution integral, separable Gaussian-sum approximation,
Coulomb/Poisson/dipole-dipole potential, singular correction integral

1. Introduction

Nonlocal potentials, like the Newtonian potential, occur in a variety of mathematical models in electro-
statics, plasma, quantum physics/chemistry to material and life sciences etc. Efficient and accurate numerical
calculation of such nonlocal potentials is an active and important topic in the science and engineering com-
munity. In this paper, we deal with nonlocal potentials, in a setting on the whole space Rd, given originally
by convolutions:

u(x) = (U ∗ ρ)(x) =

∫
Rd
U(x− y)ρ(y)dy, x ∈ Rd, d = 2, 3, (1.1)

where ∗ denotes the convolution operator, ρ(x) is the density function, and U(x) is a nonlocal (long-range)
kernel. For instance, the 3D Coulomb potential with U(x) = 1

4π|x| , is fundamental in many fields of physics

including the Bose-Einstein Condensates [3, 4, 7, 33, 32], and quantum chemistry[18, 19, 20, 24].

In this paper, we study several important nonlocal potentials with their kernels given explicitly as

U(x) =


1

4π|x| , 3D Coulomb,

1
2π|x| , 2D Coulomb,

− 1
2π ln |x|, 2D Poisson.

(1.2)
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Also the dipole-dipole convolution kernel U(x) = 3
4π

m·n−3(x·n)(m·x)/|x|2
|x|3 , with n,m ∈ R3 unit vectors, can

be reformulated through the above mentioned kernels [3, 4, 7, 23, 32, 33].
The density ρ is assumed to be smooth and fast decaying, as it is common in many applications. Therefore,

in this paper, we can reasonably assume that the density is compactly supported (numerically) in a finite
domain B, more precisely,

suppnum(ρ) := {x
∣∣ s.t.|ρ(x)| > 10−16} ⊂ B.

In this situation, the (discrete) Fourier method is a good candidate to approximate the density. Yet, the
convolution kernel and its Fourier transform are both singular at the origin and/or at the far-field, which
requires special numerical effort.

In the past few years, different techniques have been proposed in the literature, such as the Fast Multipole
Method (FMM) [14, 21], the Non-Uniform Fast Fourier Transform (NUFFT) [23, 6, 17] and Gaussian-Sum
(GS) approximations [8, 19, 20, 16, 17], etc. In the following, we briefly mention some of them and discuss
their advantages and disadvantages respectively.

The convolution (1.1) can be represented formally as a Fourier integral

u(x) =
1

(2π)d

∫
Rd
Û(k)ρ̂(k) eik·xdk, x ∈ Rd, (1.3)

where f̂(k) =
∫
Rd f(x) e−ik·x dx is the Fourier transform of f(x) for x,k ∈ Rd. Note that the Fourier

transform of the convolution kernel Û(k) is also long-range and singular, and sometimes the singularity is
too strong that the Fourier representation is not well-defined, e.g., 1/|k|2 for the 2D Poisson potential [6].

Another important equivalent formulation is to solve a partial differential equation (PDE) in whole space
Rd with appropriate far-field decay condition. For instance, the 3D Coulomb potential satisfies the Poisson
equation, i.e.,

−∆u(x) = ρ(x), x ∈ R3, lim
|x|→∞

u(x) = 0. (1.4)

All of the three formulations, (1.1), (1.3) and (1.4), are challenging numerically. In (1.1) and (1.3), the
convolution kernels and their Fourier transforms are long-range and singular at the origin and/or at the
far-field. Therefore, it requires either a large computation domain or elaborate strategies to take care of the
singularity in physical and/or phase space. Various numerical methods have been proposed via the PDE
approach on a rectangular domain with uniform mesh grid[4, 5, 34]. In the case of the 3D/2D Coulomb
potential the following difficulties arise. As the potential decays to zero at the far-field, the commonly
used periodic and homogeneous Dirichlet boundary conditions, imposed on the boundary of the rectangular
domain, do not agree very well with the far-field asymptotics. Errors coming from the boundary condition
approximation dominate as the mesh size tends smaller. The saturated accuracy achieved by Fourier/Sine
pseudospectral methods, also referred to as “locking” accuracy, improves when the domain size increases
[3, 4, 6, 7]. For the 2D Poisson potential, however, periodic or zero boundary conditions are inappropriate
at all, because the potential diverges, i.e., u(x) → C ln |x|, C > 0 as x → ∞. Exact artificial boundary
conditions on a disk were given by Zhang et al [25], while appropriate boundary conditions on the rectangular
domain remain to be further explored.

Starting from the Fourier integral (1.3), a direct plane-wave discretization suffers serious accuracy loss

due to improper treatment of the singularity in Û [6, 7, 18]. For kernels with removable singularity in
spherical/polar coordinates, e.g., the 3D/2D Coulomb potential, Jiang, Greengard and Bao[23] proposed an
accurate and efficient method which splits the kernel into a long-range regular and a short-range singular
part, and evaluates the quadrature via Fast Fourier Transform (FFT) and nonuniform FFT (NUFFT) [13],
respectively. This approach was recently adapted to the 2D Poisson case [6], whose singularity is too strong
to be canceled out in polar coordinates. Their methods can achieve spectral accuracy with great efficiency
that is inherited from the FFT and NUFFT algorithm. However, it is not ideal because of the large prefactor
in front of the O(N logN) coming from the NUFFT [13, 23]. In addition, the 3D Coulomb/dipole-dipole
evaluation is rather slow and it needs further investigation for practical simulations.
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It is more natural to start from the convolution form (1.1), as it has been done in many approaches,
see [8, 12, 18, 19, 20]. A basic idea is to modify the kernel somehow and to evaluate the long-range in-
teraction efficiently. Several methods have been proposed, such as the Ewald-type partition[24, 18], the
kernel-truncation [12], the Gaussian-sum (GS) approximation [8, 19, 20] etc. Among them, the Gaussian-
sum based method is one of the most effective and accurate methods. The approximation of the kernel
function by Gaussian/exponential sums has been studied intensively, we refer the reader to [9, 10, 11, 29].
In [8], Beylkin et al. split the 2D/3D Helmholtz potential into a convolution with Gaussian-sum in the spa-
tial domain and a band-limited multiplier in the Fourier domain. Later, Genovese et al.[19] computed the
Poisson potential by combining the interpolating scaling function (ISF) representation of the density and the
Gaussian-sum approximation. However, the best achieved accuracy in [19], around 10-digits, is limited by
the accuracy of the GS approximation. In fact, a near-field correction integral could have been incorporated
into their method.

To sum up, the NUFFT approach introduces an accurate quadrature to evaluate the correction integral,
while the advantage of the GS approximation, used in the ISF approach, is mostly due to its separable
structure. Our new method aim to combine both advantages. To this end, we adopt the Gaussian-sum
approximation for the long-range regular integral and compute the near-field correction integral with a local
interpolation (a low-order Taylor expansion) instead of the global spectral interpolation (e.g., the NUFFT
in [23]).

In our method, we represent the convolution kernel smoothly via a sum of Gaussian functions. Since this
approximation is not accurate near the origin, a correction is applied to address the discrepancies between
the Gaussian-sum and the original kernel function. Thus, we split the convolution (1.1) into two parts

u(x) =

∫
Rd
UGS(y) ρ(x− y)dy +

∫
Rd

(
U(y)− UGS(y)

)
ρ(x− y)dy, (1.5)

where UGS is the Gaussian sum (GS) approximation. The first integral in (1.5) is regular and computed
by finite Fourier series method. The second integral contains a singular kernel, whose effective support is a
small neighborhood of the origin. As a consequence, the second integral is essentially a local correction.

For the sake of simplicity, we choose a square box BL := [−L,L]d ⊂ Rd, d = 2, 3 (a general rectangular
box is also feasible), and BL is also domain of interest. Following a standard scaling argument, we first
rescale the density to be compactly supported in the unit box B1, i.e.,

x = x̃ L, ρ(x) = ρ̃(x̃), =⇒ x̃ ∈ B1, supp(ρ̃) ⊂ B1. (1.6)

Plugging (1.6) into the convolution (1.1), we have

u(x) =

∫
Rd
U(x− y)ρ(y)dy =

∫
BL

U(x− y)ρ(y)dy = Ld
∫
B1

Ũ(x̃− ỹ)ρ̃(ỹ)dỹ.

Particularly, for the 2D/3D Coulomb potentials, we have Ũ(x̃) = U(x) = U(x̃L) = L−1U(x̃), therefore,

u(x) = ũ(x̃) = Ld−1

∫
B1

U(x̃− ỹ)ρ̃(ỹ)dỹ, x̃ ∈ B1, d = 2, 3.

Similarly, for the 2D Poisson potential, we have

u(x) = ũ(x̃) = −L
2

2π

∫
B1

ρ̃(ỹ) ln |x̃− ỹ| dỹ − L2

2π
lnL

∫
B1

ρ̃(ỹ) dỹ, x̃ ∈ B1.

The domain of interest is also rescaled to B1. Therefore, the evaluation of u(x) on BL is equivalent to
computing ũ(x̃) on the unit box with rescaled density ρ̃(x̃), which is also compactly supported in B1. We
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shall omit˜hereafter for simplicity. In practice, the computational domain B1 is usually discretized uniformly
in each direction, and the density is given on the uniform grid Th:

Th = {(x(1)
j1
, . . . , x

(d)
jd

)
∣∣x(p)

jp
= −1 + jph

(p), h(p) = 2/np, 1 ≤ jp ≤ np, p = 1, . . . , d}.

One of the key ideas of our method is to utilize a (separable) GS approximation of the convolution
kernel so as to reformulate the potential into two integrals, namely, the long-range regular integral and the
short-range singular integral. To be precise, we reformulate the potential (1.1) as follows:

u(x) =

∫
Rd
UGS(y) ρ(x− y)dy +

∫
Rd

(
U(y)− UGS(y)

)
ρ(x− y)dy (1.7)

:= I1(x) + I2(x), x ∈ B1, (1.8)

where UGS , the GS approximation of the kernel, is given explicitly as follows:

UGS(y) = UGS(|y|) :=

S∑
q=0

wq e
−τ2

q |y|
2

, S ∈ N+, (1.9)

with weights and nodes {(wq, τq)}Sq=0. I1(x) is the long-range regular integral and the correction I2(x) is
the short-range singular integral. It is noteworthy to point out that the singularity of the integrand of I2 at
the origin in physical space is canceled out in spherical/polar coordinates by the Jacobian of the coordinate
transform.

The GS approximation is done over an interval excluding the origin, and computed numerically with
sinc quadrature for an integral representation of the kernel function. The accuracy over an interval [δ, 2] is
about 10−14 − 10−16 in relative/absolute L∞-norm, whereas the parameter δ does not have to be as small
as in [19]. In practice, we choose some intermediate values, e.g. 10−4, 10−3. Therefore the effective support
of the correction U − UGS is a δ-neighbourhood of the origin. The idea of exploiting the locality of the
correction term resulting from a GS approximation has already been proven effective by Exl and Schrefl
[17] in computational micromagnetics. This gives us the possibility to approximate the density with a local
interpolation (Taylor expansion) in I2.

The tensor product structure of the GS approximation is exploited for accurate and stable pre-computation
of relevant coefficients, which are originally higher-dimensional integrals. The sinc quadrature approach gives
us a suitable, fast and easily adaptable way to obtain the GS approximation, however, we shall remark that
the sinc quadrature does not lead to an optimal approximation in terms of a minimal number of Gaussian
terms. We refer to [11, 12, 17, 22] for more details.

The paper is organized as follows. In Section 2, we describe the algorithm, which consists of two steps:
long-range regular integral evaluation, short-range singular integral evaluation. Then we present extensions
to dipole-dipole potentials. A detailed error analysis is given, too. In Section 3, we present details on the
Gaussian-sum approximation of two kernels, i.e., the Coulomb kernel 1/r and 2D Poisson kernel ln r, by
sinc quadrature. In Section 4, extensive numerical results are given to illustrate the performance of our new
method in both accuracy and efficiency. Finally, some concluding remarks are drawn in Section 5.

2. Numerical algorithm

Following the previous discussion, we shall illustrate the computation of I1 and I2, present a detailed
analysis in terms of accuracy and efficiency, and discussion possible extensions to some important models.
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2.1. Evaluation of the regular integral I1(x)

Due to the compact support of the density, plugging the explicit GS approximation (1.9) into I1(x) yields

I1(x) =

∫
Rd

S∑
q=0

wq e
−τ2

q |y|
2

ρ(x− y)dy, x ∈ B1 (2.10)

=

S∑
q=0

wq

∫
Bx,1

e−τ
2
q |y|

2

ρ(x− y)dy, x ∈ B1 (2.11)

=

S∑
q=0

wq

∫
B2

e−τ
2
q |y|

2

ρ(x− y)dy, x ∈ B1, (2.12)

where Bx,1 := B1 + x is the unit box centered at x. Identity (2.12) holds because ρ(x − y) = 0,∀ x ∈
B1, y ∈ B2 \Bx,1. For x ∈ B1 and y ∈ B2 holds x − y ∈ B3, and we can approximate the density on B3

by a Fourier pseudo-spectral method with spectral accuracy [31]. More specifically, a simple zero-padding of
the density from B1 to B3 is applied first, and the padded density ρ is well resolved by the following finite
Fourier series:

ρ(z) ≈
∑
k

ρ̂k

d∏
j=1

e
2πi kj
bj−aj

(z(j)−aj)
, z = (z(1), . . . , z(d)) ∈ B3, (2.13)

where aj = −3, bj = 3, j = 1, . . . , d and k = (k1, . . . , kd) ∈ Zd with kj = −ñj/2, . . . , ñj/2− 1 and ñj = 3nj .
The Fourier coefficients are determined as follows:

ρ̂k =
1

|B3|

∫
B3

ρ(z)

d∏
j=1

e
−2πi kj
bj−aj

(z(j)−aj)
dz, (2.14)

where |B3| =
∏d
j=1(bj − aj) is the volume. The above integral is approximated by a trapezoidal rule, and

the summation is accelerated by Fast Fourier Transform (FFT) [28].
Plugging (2.13) into (2.12), we have

I1(x) =

S∑
q=0

wq

∫
B2

e−τ
2
q |y|

2

ρ(x− y)dy (2.15)

≈
S∑
q=0

wq
∑
k

ρ̂k

d∏
j=1

e
2πi kj
bj−aj

(x(j)−aj)
∫
B2

e−τ
2
q |y|

2
d∏
j=1

e
−2πi kj y

(j)

bj−aj dy (2.16)

=

S∑
q=0

wq
∑
k

ρ̂k

d∏
j=1

e
2πi kj
bj−aj

(x(j)−aj)
d∏
j=1

∫ 2

−2

e−τ
2
q |y

(j)|2e
−2πi kj y

(j)

bj−aj dy(j) (2.17)

=
∑
k

ρ̂k

(
S∑
q=0

wqG
q
k

)
d∏
j=1

e
2πi kj
bj−aj

(x(j)−aj)
, (2.18)

where

Gqk =

d∏
j=1

∫ 2

−2

e−τ
2
q |y

(j)|2 e
−2πikj y

(j)

bj−aj dy(j) =

d∏
j=1

∫ 2

0

2 e−τ
2
q |y

(j)|2 cos(
2πkj y

(j)

bj−aj )dy(j). (2.19)

The coefficients in (2.19) are tensor products for any fixed index q. Notice that Gqk does not depend on the

mesh size ~h := (h1, . . . , hd)T or the density ρ. Therefore, it can be pre-computed, which greatly enhances
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Figure 1: The 4-periodic (green-solid) and the 6-periodic (black-dotted) extension coincide on B3.

the efficiency of the evaluation of I1, because the potential is usually solved many times in simulations. For
a given discretization, we can pre-compute and store the sums of coefficients, i.e.,

∑S
q=0 wqG

q
k, which helps

to decrease the CPU-time dramatically at a small expense of storage. To compute Gqk, we only need to
calculate three 1-dimensional vectors whose components are given as integrals. The integrals in (2.19) can

be evaluated numerically by a Gauss-Kronrod quadrature up to machine precision [26]. Once
∑S
q=0 wqG

q
k is

known, I1(x) can be computed by (2.18) and the summation can be accelerated by FFT.

Remark 2.1. Actually, we can restrict the zero-padding to B2 and apply the Fourier series approximation
(2.13) on B2 instead of B3. This can be inferred from the fact that the 4-periodic and the 6-periodic extension
of the density coincide on B3, see Fig. 1. Correspondingly, the constants in (2.13) will be changed to
aj = −2, bj = 2, ñj = 2nj , j = 1, . . . , d.

2.2. Evaluation of the singular correction integral I2(x)

For the purpose of evaluating I2(x), we first split it into two integrals as

I2(x) =

∫
Rd

(U(y)− UGS(y)) ρ(x− y)dy, x ∈ B1 (2.20)

=

(∫
Bδ

+

∫
Rd\Bδ

)
(U(y)− UGS(y)) ρ(x− y)dy, x ∈ B1 (2.21)

:= I2,1(x) + I2,2(x), x ∈ B1. (2.22)

As can be inferred from the compactness assumption, i.e., supp(ρ) ⊂ B1, we have for x ∈ B1 that
supp{ρ(x−y)} ⊂ B2. Therefore, the latter integral I2,2(x) is equivalent to an integral defined on a bounded
domain, i.e., D := B2\Bδ. To be more precise, we have

I2,2(x) =

∫
Rd\Bδ

(U(y)− UGS(y)) ρ(x− y)dy, x ∈ B1 (2.23)

=

∫
D

(U(y)− UGS(y)) ρ(x− y)dy, x ∈ B1. (2.24)

Since the GS approximation of U gives an error ε on D, we get the following estimate after introducing
spherical/polar coordinates:

|I2,2(x)| ≤ |Sd−1| ‖ρ‖∞
∫ 2

δ

rd−1 |U(r)− UGS(r)| dr ≤ C ‖ρ‖∞ max
r∈[δ,2]

| (U(r)− UGS(r)) |, (2.25)

where |Sd−1| = 2πd/2

Γ(d/2) is the volume of unit surface in Rd and C is a constant not depending on the density.

We neglect I2,2 because of the near-machine precision accurate GS approximation in (2.25).
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Remark 2.2. The error estimate in (2.25) does not really have to depend on the density ρ, simply because
we can normalize the density at the very beginning, i.e. ‖ρ‖∞ = 1, see (1.6). In (2.25), the integral is actually
over r ∈ [δ, 2

√
d]. We neglected this issue for the sake of easier notation. In fact, it can be ultimately justified

by rescaling the effective support into a smaller domain B1/
√
d.

In order to compute I2,1, we first need to interpolate the density function in a δ-neighborhood of x.
Since δ is small (we choose δ = 10−3 or 10−4 in our implementation), the interpolation of the density
ρx(y) := ρ(x− y) within Bδ can be done by the Taylor expansion. More precisely, we have

ρx(y) = Px(y) + Rx(y), y ∈ Bδ, (2.26)

where Px(y), the third order Taylor expansion, is defined as follows:

Px(y) = ρx(0) +

d∑
j=1

∂ρx(0)

∂yj
yj +

1

2

d∑
j,k=1

∂2ρx(0)

∂yj∂yk
yj yk +

1

6

d∑
j,k,l=1

∂3ρx(0)

∂yj∂yk∂yl
yj yk yl, (2.27)

and the remainder Rx(y) = C(ρ,x)|y|4 with the constant C(ρ,x) depending on the density ρ and x. Next,
we plug the spherical/polar representation of (2.27) into (2.22), where we ignore the part I2,2 as explained
before. After integration over the variables (r, θ, φ)/(r, φ), the evaluation of I2,1 comes down to simple
multiplication of the Laplacian ∆ρ and some constants, since the contributions of the odd derivatives in
(2.27) and off-diagonal components of the Hessian vanish. The derivatives of ρ are computed using the
Fourier series approximation of ρ. It is worth mentioning that we do not have to resort to any numerical
quadrature at this point. For example, to compute ∆ρ, starting from (2.13) and differentiating the basis
function, we have the following

∆ρ ≈
∑
k

ρ̂k ∆

 d∏
j=1

e
2πi kj
bj−aj

(z(j)−aj)

 (2.28)

=
∑
k

ρ̂k

− d∑
j=1

(
2π kj
bj − aj

)2

 d∏
j=1

e
2πi kj
bj−aj

(z(j)−aj)
. (2.29)

The approximation error of I2,1 by Ĩ2,1 (the integral I2,1 with Taylor expansion of ρ) is estimated as
follows:

|(I2,1 − Ĩ2,1)(x)| =
∣∣∣ ∫
Bδ

(U(y)− UGS(y))C(ρ,x)|y|4dy
∣∣∣ (2.30)

≤ ‖C(ρ,x)‖∞|Sd−1|
∣∣∣ ∫ δ

0

rd−1 r4|U(r)− UGS(r)|dr
∣∣∣ (2.31)

≤ ‖C(ρ,x)‖∞ |Sd−1|CS
{

δd+3, Coulomb kernel
δ6 | log δ|, Poisson kernel

(2.32)

where

Ĩ2,1(x) =

∫
Bδ

(U(y)− UGS(y)) Px(y)dy, (2.33)

and CS is a positive parameter depending on the weights of the GS approximation (see Sec. 3).

For the reader’s convenience, we summarize the key steps of our method in Algorithm 1.

Remark 2.3. The overall computational cost consists of two FFT evaluations of size 2dN and two of size
N plus O(N) multiplications and additions, where N =

∏d
j=1 nj is the total number of grid points in the

physical domain. The total memory storage is of size O(N).
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Algorithm 1 Evaluation of the nonlocal potential (1.1)

Precomputation

1. Gaussian-sum approximation of the kernel U(x) in (1.2).

2. Fourier coefficients Gqk in (2.19) via its tensor product composing vectors.

Actual computation

1. Compute ρ̂k, see (2.14).

2. Evaluate I1 by (2.18) with FFT.

3. Compute the Laplacian of ρ with FFT.

4. Evaluate Ĩ2,1 by (2.33).

5. Add I1 and Ĩ2,1 to obtain the approximation of u.

2.3. Extension to the dipole-dipole potential

The dipole-dipole potential is of great importance in condensed matter and quantum mechanics [32, 33].
It also takes convolution form, i.e., u(x) = U ∗ ρ where

U(x) =
3

4π

m · n− 3(x · n)(m · x)/|x|2

|x|3
(2.34)

= −(m · n)δ(x)− 3 ∂nm

(
1

4π|x|

)
, x ∈ R3.

Using the convolution theorem, we can rewrite the dipole-dipole potential as follows:

u(x) = −(m · n)ρ(x) + ∂nm

(
1

4π|x|

)
∗ ρ = −(m · n)ρ(x) +

1

4π|x|
∗ (∂nmρ) . (2.35)

Therefore, the computation of u consists of the evaluation of the 3D Coulomb potential with the source term
∂nmρ(x). Since the density ρ(x) is smooth and compactly supported in BL, it can be approximated by finite
Fourier series with spectral accuracy, and so does the second derivative ∂nmρ(x). The source term ∂nmρ(x)
can be easily computed with arithmetic operations of the discrete Fourier coefficients.

We note that a similar situation arises in the Davey-Stewartson nonlocal potential in 2D, where one could
solve Poisson’s equation with the second derivative of the density as source term. Hence, in the convolution
form, one only has to convolve the 2D Poisson kernel with the second order derivative of the density, see
example 5 in Sec. 4.

2.4. Anisotropic densities

For clarity, we assume that the (rescaled) density is compactly supported in the rectangular box B1,η :=
[−1, 1]d−1×η[−1, 1]. Here, the regular integral and correction integral need modifications accordingly. More
precisely, for the evaluation of the regular integral, the related changes are listed as follows:

I1(x) =
∑
k

ρ̂k

(
S∑
q=0

wqG
q
k

)
e

2πi kd
ε(bd−ad)

(x(d)−εad)
d−1∏
j=1

e
2πi kj
bj−aj

(x(j)−aj)
, (2.36)

where

Gqk =

∫ 2η

−2η

e−τ
2
q |y

(d)|2e
−2πikd y

(d)

η(bd−ad) dy(d)
d−1∏
j=1

∫ 2

−2

e−τ
2
q |y

(j)|2e
−2πikj y

(j)

bj−aj dy(j). (2.37)

For the correction integral I2, we have to choose δ < η so as to guarantee the validity and accuracy of the
Taylor expansion. Numerical results for the 2D/3D Coulomb potentials are displayed in Section 4, see Tab. 5
and Tab. 3.
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Remark 2.4. Given a general rectangular domain, e.g., [−Lx, Lx] × [−Ly, Ly] in 2D, the above algorithm
for anisotropic densities can then be adapted simply by setting η = min{Lx/Ly, Ly/Lx}. The method for the
3D Coulomb potential evaluated on a more general rectangular domain can be adapted accordingly.

3. Kernel approximation

The highly accurate approximation of the kernel in [δ, 2], δ > 0 is of particular importance in our algo-
rithm. Here we choose the GS approximation, which has already been exploited extensively in [9, 10, 11, 29].
Its tensor product structure leads to a considerable simplification of the pre-computation (2.19) in the evalu-
ation of the regular integral I1. The high accuracy in the GS approximation of the kernel in an interval [δ, 2]
allows us to neglect the integral I2,2, see (2.25). Consequently, the correction integral I2 can be confined to
a small ball Bδ.

We use the sinc quadrature approach to obtain the GS approximation, which relies on a Gaussian integral
representation of the kernel U . In this section, we briefly review some facts of the sinc quadrature [22, 29] to
make our paper reasonably self-contained, then present the concrete approximations of the kernels 1/r and
ln r on an interval [δ, 2], 0 < δ � 1.

3.1. Sinc quadrature

The sinc function sinc(t) := sin(πt)
πt is an analytic function, which equals to 1 at t = 0 and zero at

t ∈ Z \ {0}. Sufficiently fast decaying continuous functions f ∈ C(R) can be interpolated at the grid points
tk = kϑ ∈ ϑZ, ϑ > 0 (step size) by functions Sk,ϑ(t) := sinc(t/ϑ− k), i.e.,

fϑ(t) =
∑
k∈Z

f(kϑ)Sk,ϑ(t). (3.38)

Since
∫
R sinc(t) dt = 1, an interpolatory quadrature for

∫
R f(t) dt is given as follows:∫

R
f(t) dt ≈ ϑ

∑
k∈Z

f(kϑ), (3.39)

which can be viewed as “infinite trapezoidal rule” quadrature. Finite truncation to the first 2S+1 terms, i.e.,
k = −S, . . . , S, of the infinite sum leads to the sinc quadrature rule with the error ϑ

∑
|k|>S f(kϑ) depending

on the decay-rate of f . For functions f(z) in the Hardy space H1(Dλ), λ < π/2, i.e., f(z) is holomorphic in
the strip Dλ := {z ∈ C : |= z| ≤ λ} and

N(f,Dλ) :=

∫
∂Dλ

|f(z)| |dz| =
∫
R

(
|f(t+ iλ)|+ |f(t− iλ)|

)
d t <∞, (3.40)

if f(z) also satisfies the double exponential decay property on the real axis, we have the following exponential
error estimate for sinc quadrature approximation, see [22] (Proposition 2.1).

Proposition 1 ([22]). Let f ∈ H1(Dλ) with λ < π/2. If f satisfies the double exponential decay condition,
i.e.,

|f(t)| ≤ C exp(−bea|t|) ∀ t ∈ R with a, b, C > 0, (3.41)

then the quadrature error for the special choice ϑ = ln( 2πaS
b )/(aS) satisfies∣∣∣∣∣∣

∫
R
f(t) dt− ϑ

∑
|k|≤S

f(kϑ)

∣∣∣∣∣∣ ≤ C N(f,Dλ) exp
( −2πλaS

ln(2πaS/b)

)
. (3.42)
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Remark 3.1. In the case of an integral expression
∫
R g(t) exh(t) dt, the constants in (3.42) depend on the

parameter x. For some fixed x, an accuracy of ε > 0 can be achieved with S = O(| ln ε| · ln | ln ε|). Moreover,
in our computations, we use the simplified step-size ϑ = c0 ln(S)/S, see (3.42), as in [22] with some positive
constant c0 (i.e., c0 = 2.1 for the Coulomb kernel and c0 = 1 for the Poisson kernel).

In the following, we first represent the kernels 1/|x| and ln |x| in Gaussian integral forms and then apply
the sinc quadrature to obtain GS approximations. These approximations are valid in an interval [δ, 2] and
used to split the convolution (1.1), see (1.7).

3.2. Approximation of the Coulomb kernel 1/r over [δ, 2]

Starting from the following identity∫ ∞
0

ταe−ρτ
2

dτ = Γ(α+1
2 )ρ−

α+1
2 , ρ > 0, α > −1, (3.43)

for α = 0 and ρ = |x|2, we get the following Gaussian integral representation for the Coulomb kernel

1

|x|
=

2√
π

∫ ∞
0

e−|x|
2τ2

dτ =
2√
π

∫ ∞
0

d∏
p=1

e−x
(p)2τ2

dτ. (3.44)

Note that, applying some numerical quadrature to the integral
∫∞

0
e−ρτ

2

dτ leads to a GS approximation

1

|x|
≈
∑
q

wq

d∏
j=1

e−τ
2
q x

(j)2

. (3.45)

Remark 3.2. For kernels 1/|x|β , β > 0, choosing α = β − 1, formula (3.43) gives a Gaussian integral
representation analogous to that of the Coulomb kernel. Substituting ρ = |x|2 and applying the numerical
quadrature, we obtain a GS approximation.

The numerical quadrature we choose here is the sinc quadrature, see Sec. 3.1, which is suited for integrals∫
R f(t) dt with f ∈ C(R) decaying sufficiently fast. More precisely, by a change of variables in (3.44), i.e.,

τ = sinh t := 1
2 (et − e−t), the updated integrand lies in a Hardy space with double exponential decay

condition. Hence, Proposition 1 applies, i.e., the sinc quadrature converges exponentially with respect to the
number of Gaussian terms. Moreover, the integrand is an even function, thus, we end up with only S + 1
terms.

A detailed analysis (similar to that in [15]) shows that the quadrature for 1/r, r = |x| is acceptable for an
interval r ∈ [δ, 2], 0 < δ � 1. The left picture of Fig. 2 shows the relative error Erel of the GS approximation,

where Erel := ‖ 1−
∑S
q=0 wq r e

−τ2
q r

2

‖L∞((δ,2]). We could observe the exponential convergence in S.

3.3. Approximation of the Poisson kernel ln r over [δ, 2]

In this subsection we present a GS approximation for the 2D Poisson kernel ln |x| := ln
√
x(1)2

+ x(2)2
.

Setting α = 1 in (3.43), we have

1

x(1)2
+ x(2)2 =

∫ ∞
0

e−(x(1)2+x(2)2)τ dτ. (3.46)

By applying a change of variables τ = ln (1 + exp(sinh t)), the integration domain in (3.46) is now the whole
real axis and the integrand has double exponential decay. Thus, we can apply the sinc quadrature (2S + 1
terms in this case) to obtain a GS approximation of |x|−2 in [1, R], R > 1, from which we can change to
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Figure 2: Number of terms S versus Erel for the kernel 1/r (left), Eabs for ln r (right) on [δ, 2].

the interval [δ, 2] following a scaling argument. Inserting the GS approximation of 1/|x|2 into the following
formula

ln

√
x(1)2

+ x(2)2
=

∫ x(1)

√
1−x(2)2

y

y2 + x(2)2 dy, (3.47)

we obtain an GS approximation of the Poisson kernel as follows:

ln

√
x(1)2

+ x(2)2 ≈ C0 −
S∑
q=1

w̃q e
−τ̃q(x(1)2+x(2)2) =:

S∑
q=0

wq e
−τ2

q (x(1)2+x(2)2), (3.48)

where w0 = C0, wq = −w̃q, q ≥ 1 and τ0 = 0, τq = τ̃
1/2
q , q ≥ 1. Note that the coefficients wq and τq in (3.48)

should be computed stably (double precision) for both small and large nodes τq. The right figure in Fig. 2

shows the absolute error Eabs := ‖ ln r −
∑S
q=0 wq e

−τ2
q r

2

‖L∞((δ,2]) for the kernel ln r.

4. Numerical results

In order to demonstrate the accuracy and efficiency of our method, we perform several numerical tests
in this section. All the numerical errors are calculated in the relative maximum norm, which is defined as
follows

E :=
‖u− u~h‖l∞
‖u‖l∞

=
maxx∈Th |u(x)− u~h(x)|

maxx∈Th |u(x)|
, (4.49)

where Th is the rectangular computational domain discretized uniformly in each direction with mesh sizes
~h = (hx, hy)T and (hx, hy, hz)

T for 2D and 3D, respectively. The grid function u~h is the numerical solu-
tion and u is the exact solution. Further, we denote the total number of grid points by N := nxnynz and
N := nxny for the 3D and 2D domain, respectively. For the sake of convenience, we denote the mesh sizes
~h simply by h if hp is equal to each other.

The algorithm is implemented in FORTRAN, the code is compiled by ifort (version 14.0.2) using the
option -O3, and executed on the Vienna Scientific Cluster (VSC-1). The CPU time shown in this section
do not include the pre-computation time, since it is usually not relevant for most applications where the
nonlocal potential is evaluated many times on the same grid.

Example 1. The 3D Coulomb potential.
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For the density ρ(x) := e−(x2+y2+γ2z2)/σ2

with σ > 0 and γ ≥ 1, the 3D Coulomb potential, with the kernel
U(x) = 1

4π|x| , can be computed analytically as

u(x) =


σ3√π
4 |x| Erf

(
|x|
σ

)
, γ = 1,

σ2

4γ

∫∞
0

e
− x2+y2

σ2(t+1) e
− z2

σ2(t+γ−2)

(t+1)
√
t+γ−2

dt, γ 6= 1,

x ∈ R3, (4.50)

where Erf(x) = 2√
π

∫ x
0
e−t

2

dt for x ∈ R is the error function. For densities ρx0(x) := ρ(x−x0) with x0 ∈ R3,

the corresponding 3D Coulomb potential is given exactly as ux0
(x) = u(x− x0).

The 3D Coulomb potential is computed on [−L,L]2 × [−L/γ, L/γ] with mesh size hx = hy, hz = hx/γ.
Table 1 shows the errors E and computation time for the isotropic density, i.e., γ = 1, with σ = 1.2 on
different domains [−L,L]3, where T1, T2 and Ttotal denote hereafter the time for the evaluation of I1, I2 in
(1.7) and the total time, respectively. Table 2 presents the results of the potential for shifted density with
σ = 1.2 and x0 = (1, 2, 1)T computed on [−12, 12]3. Table 3 lists the errors E and timings for different
anisotropic densities with σ = 2 computed on [−12, 12]2 × [−12/γ, 12/γ] using the same mesh size in x and
y-direction, i.e., hx = hy = 1/4 and a different mesh size in z-direction, i.e., hz = hx/γ.

From Tab. 1-3, we can conclude that: (i) The method is spectral accurate with respect to the mesh size h
and efficient with a complexity of O(N logN). (ii) The anisotropic potential can be computed with spectral
accuracy without increasing the memory or CPU time as γ tends larger, thus, it is ideal for applications.

Table 1: Errors and timings of the 3D Coulomb potential in Example 1 with isotropic density with σ = 1.2 on [−L,L]3.

L = 8 N E T1 T2 Ttotal
h = 1 163 1.096E-03 9.99E-04 1.00E-03 2.00E-03
h = 1/2 323 1.130E-09 1.60E-02 2.00E-03 1.80E-02
h = 1/4 643 6.169E-16 1.93E-01 1.90E-02 2.12E-01
h = 1/8 1283 6.187E-16 1.69 6.28E-01 2.31
h = 1/16 2563 7.725E-16 15.03 4.71 19.74

L = 16 N E T1 T2 Ttotal
h = 1 323 1.113E-03 1.60E-02 2.00E-03 1.80E-02
h = 1/2 643 1.191E-09 1.95E-01 2.10E-02 2.16E-01
h = 1/4 1283 9.259E-16 1.71 6.22E-01 2.33
h = 1/8 2563 9.271E-16 15.18 4.76 19.94

Table 2: Errors and timings of the 3D Coulomb potential in Example 1 for shifted Gaussian density with σ = 1.2 and
x0 = (1, 2, 1)T on [−12, 12]3.

L=12 N E T1 T2 Ttotal
h = 1 243 1.108E-03 7.00E-03 4.00E-03 1.10E-02
h=1/2 483 1.175E-09 8.10E-02 1.20E-02 9.30E-02
h=1/4 963 6.182E-16 7.03E-01 1.08E-01 8.11E-01
h=1/8 1923 7.717E-16 6.30 1.08 7.37

Example 2. The 2D Coulomb potential.
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Table 3: Errors and timings of the 3D Coulomb potential in Example 1 for anisotropic densities with σ = 2 computed on
[−12, 12]2 × 1

γ
[−12, 12] with hx = hy = 1/4, hz = hx/γ (N = 963).

γ E ‖u‖max T1 T2 Ttotal
1 4.486E-16 2 6.76E-01 1.01E-01 7.77E-01
2 5.599E-16 1.209 6.83E-01 1.02E-01 7.85E-01
4 1.427E-15 0.681 6.81E-01 1.00E-01 7.81E-01
8 2.606E-14 0.364 6.78E-01 1.03E-01 7.81E-01

For the density ρ(x) = e−(x2+γ2y2)/σ2

with σ > 0 and γ ≥ 1, the 2D Coulomb potential, with the kernel
U(x) = 1

2π|x| , can be obtained analytically as

u(x) =


√
π σ
2 I0

(
|x|2
2σ2

)
e−
|x|2

2σ2 , γ = 1,

σ
γ
√
π

∫∞
0

e
− x2

σ2(t2+1) e
− y2

σ2(t2+γ−2)
√
t2+1
√
t2+γ−2

dt, γ 6= 1,

x ∈ R2, (4.51)

where I0 is the modified Bessel function of the first kind [1].
Similarly, we shall first present the accuracy and efficiency of our method on fixed domains [−L,L]2 with

σ = 1.2 in Table 4. We compute the 2D Coulomb potential for anisotropic densities on [−L,L]× [−L/γ, L/γ]
using a fixed mesh size in x-direction, i.e., hx = 1/4, and different mesh sizes in y-direction, i.e., hy = hx/γ,
see Table 5. From Tab.4 and Tab.5, we can draw similar conclusions as in the case of the 3D Coulomb
potential.

Table 4: Errors and timings of the 2D Coulomb potential in Example 2 for σ = 1.2 on [−L,L]2 with different mesh sizes.

L = 8 N E T1 T2 Ttotal
h = 1 162 9.426E-04 0 0 0
h=1/2 322 1.720E-09 0 0 0
h=1/4 642 4.190E-16 2.00E-03 1.01E-03 3.00E-03
h=1/8 1282 5.229E-16 6.00E-03 2.00E-03 8.00E-03
h=1/16 2562 5.229E-16 2.30E-02 7.01E-03 3.00E-02

L=16 N E T1 T2 Ttotal
h = 1 322 9.576E-04 1.00E-03 0 1.00E-03
h=1/2 642 1.815E-09 1.00E-03 0 1.00E-03
h=1/4 1282 5.846E-15 5.00E-03 2.00E-03 7.00E-03
h=1/8 2562 5.846E-15 2.60E-02 7.00E-03 3.30E-02
h=1/16 5122 6.055E-15 2.47E-01 2.80E-02 2.75E-01

Example 3. The 2D Poisson potential.

For ρ(x) := e−|x|
2/σ2

= e−r
2/σ2

with r = |x| and σ > 0, the 2D Poisson potential, with the kernel U(x) =
− 1

2π ln |x|, can be obtained analytically as

u(x) =

 −
σ2

4

[
E1

(
|x|2
σ2

)
+ 2 ln(|x|)

]
, x 6= 0,

σ2

4

(
γe − ln(σ2)

)
, x = 0,

(4.52)
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Table 5: Errors and timings of the 2D Coulomb potential in Example 2 for anisotropic densities with σ = 2 computed on
[−12, 12] × 1

γ
[−12, 12] with hx = 1/8, hy = hx/γ and N = 1922.

γ E ‖u‖max T1 T2 Ttotal
1 5.047E-16 1.773 1.00E-02 2.00E-03 1.20E-02
2 5.479E-16 1.217 1.20E-02 3.00E-03 1.50E-02
4 4.235E-16 7.902E-01 9.00E-03 2.00E-03 1.10E-02
8 1.402E-15 4.902E-01 1.20E-02 2.00E-03 1.40E-02
16 8.387E-15 2.935E-01 1.20E-02 2.00E-03 1.40E-02

where E1(r) :=
∫∞
r
t−1e−tdt for r > 0 is the exponential integral function [1] and γe ≈ 0.5772156649015328606

is the Euler-Mascheroni constant.
The 2D Poisson potential is computed on [−L,L]2 with mesh size hx = hy. Table 6 shows the errors E

and computation time with σ = 1.2 on [−L,L]2 with different mesh sizes. Spectral accuracy and O(N logN)
scaling can be observed from Tab. 6.

Table 6: Errors and timings of the 2D Poisson potential in Example 3 with σ = 1.2 on [−L,L]2.

L = 8 N E T1 T2 Ttotal
h = 1 162 3.768E-04 0 0 0
h=1/2 322 3.331E-10 1.00E-03 0 1.00E-03
h=1/4 642 3.623E-15 2.00E-03 1.00E-03 3.00E-03
h=1/8 1282 2.988E-15 6.00E-03 1.00E-03 7.00E-03
h=1/16 2562 5.085E-15 2.30E-02 4.00E-03 2.70E-02

L=16 N E T1 T2 Ttotal
h = 1 322 2.966E-04 1.00E-04 0 1.00E-03
h=1/2 642 2.713E-10 2.00E-03 0 2.00E-03
h=1/4 1282 3.856E-15 6.00E-03 2.00E-03 8.00E-03
h=1/8 2562 3.164E-15 2.60E-02 6.00E-03 3.20E-02
h=1/16 5122 6.921E-15 2.47E-01 3.00E-02 2.77E-01

Example 4. The dipole-dipole potential in 3D.

The 3D dipole-dipole potential is defined by convolution as follows [3, 4, 23]:

u(x) = −(n ·m) ρ(x)− 3 ∂nm

(
1

4π|x|
∗ ρ
)

= −(n ·m) ρ(x)− 3
1

4π|x|
∗
(
∂nm ρ

)
(4.53)

where n,m are two given unit vectors in R3. Note that the dipole-dipole potential can actually be calculated
via the Coulomb potential by (4.53) with the new source term

(
∂nmρ

)
. Numerically, the source term

(
∂nmρ

)
can be easily obtained by differentiating the Fourier pseudospectral approximation of ρ, compare with (2.28).

Similarly, we consider a radial symmetric density ρ(x) = e−|x|
2/σ2

, and the potential is given explicitly
as

u(x) = −(n ·m) ρ(x)− 3 ∂nm

(
1

4π|x|
∗ ρ
)

= −(n ·m) ρ(x)− 3 ∂nm

(
σ2
√
π

4

Erf(r/σ)

r/σ

)
(4.54)

= −(n ·m) ρ(x)− 3 nTD m,
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where δij is the Dirac delta function and the Hessian matrix D is given as follows

Dij = δij

(
σ2

2r2
e−

r2

σ2 − σ3
√
π

4r3
Erf
( r
σ

))
+

xixj

(
−3 σ2

2 r4
e−

r2

σ2 − 1

r2
e−

r2

σ2 +
3 σ3
√
π

4 r5
Erf
( r
σ

))
, i, j = 1, 2, 3.

Table 7 shows the errors and timings of the 3D dipole-dipole potential evaluation with σ = 1.2 and two
randomly chosen vectors n = (0.82778, 0.41505,−0.37751)T ,m = (0.3118, 0.9378,−0.15214)T on [−8, 8]3.
Here, Tpre is the CPU time for computing the source term ∂nmρ, T1, T2 and Ttotal are the same as those
defined previously. We observe spectral accuracy and the timings show the expected scaling O(N logN).

Table 7: Errors and timings of the 3D dipole-dipole potential in Example 4 with σ = 1.2,n = (0.82778, 0.41505,−0.37751)T ,m =
(0.3118, 0.9378,−0.15214)T on [−8, 8]3.

L = 8 N E Tpre T1 T2 Ttotal
h = 1 163 1.380E-02 0 2.00E-03 0 2.00E-03
h=1/2 323 2.647E-07 2.00E-03 1.50E-02 2.00E-03 1.90E-02
h=1/4 643 1.430E-14 1.70E-02 2.00E-01 1.90E-02 2.35E-01
h=1/8 1283 4.076E-14 1.96E-01 1.68 2.20E-01 2.10

Example 5. The Davey-Stewartson (DS) nonlocal potential.

In the DS equation, the nonlocal potential can be given by a convolution as follows:

u(x) = − 1

2π
ln |x| ∗ (∂xxρ), x ∈ R2. (4.55)

For a Gaussian density ρ(x, y) = π e−π
2(x2+y2), the DS nonlocal potential is given explicitly, in polar

coordinates, as

Φ(r, θ) = −
(π

2
e−π

2r2 + cos(2θ) e−π
2r2(2πr2)−1(1 + π2r2 − eπ

2r2)
)
. (4.56)

Table 8 displays the errors and computational time for the computation of the DS nonlocal potential on
[−8, 8]2. We observe the scaling O(N logN) and rapid decrease of the error as the mesh size gets smaller,
although the best reached precision is above those of the previous 2D Poisson/Coulomb examples. In this
context, note that the parameter σ is larger compared to the preceding test in Example 3, i.e. a finer
resolution would be needed for the more localized density.

Table 8: Errors and timings of the DS nonlocal potential in Example 5 on [−8, 8]2.

L = 8 N E T1 T2 Ttotal
h=1/2 322 1.474 1.00E-03 0 1.00E-03
h=1/4 642 5.720E-03 2.00E-03 0 2.00E-03
h=1/8 1282 3.974E-09 5.00E-03 2.00E-04 6.00E-03
h=1/16 2562 4.536E-13 2.20E-02 7.00E-03 2.80E-02
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5. Conclusions

Starting from the convolution formulation, we presented an efficient and accurate algorithm for the
computation of several standard nonlocal (long-range) potentials induced by smooth and fast decaying
densities. The method uses a Gaussian-sum (GS) approximation of the singular convolution kernel in order to
split the convolution into two integrals, namely a long-range regular and a short-range singular integral. The
regular integral is computed with a Fourier method using FFT, while the singular integral evaluation makes
use of a low-order Taylor expansion of the density and is realized via FFT as well. The algorithm achieves
spectral accuracy and is essentially as efficient as the FFT algorithm with a computational complexity of
O(N logN), where N is the total number of points in the discretization of physical space. The method
was implemented in FORTRAN and verified for several different potentials, including the 2D/3D Coulomb
potential, the 2D Poisson, the 3D dipole-dipole potential and the Davey-Stewartson nonlocal potential.
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