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Abstract

In this paper, we propose some efficient and robust numerical methods to compute the ground states and
dynamics of Fractional Schrödinger Equation (FSE) with a rotation term and nonlocal nonlinear interac-
tions. In particular, a newly developed Gaussian-sum (GauSum) solver is used for the nonlocal interaction
evaluation [35]. To compute the ground states, we integrate the preconditioned Krylov subspace pseudo-
spectral method [5] and the GauSum solver. For the dynamics simulation, using the rotating Lagrangian
coordinates transform [16], we first reformulate the FSE into a new equation without rotation. Then, a
time-splitting pseudo-spectral scheme incorporated with the GauSum solver is proposed to simulate the new
FSE. In parallel to the numerical schemes, we also prove some existence and nonexistence results for the
ground states. Dynamical laws of some standard quantities, including the mass, energy, angular momen-
tum and the center of mass, are stated. The ground states properties with respect to the fractional order
and/or rotating frequencies, dynamics involving decoherence and turbulence together with some interesting
phenomena are reported.

Keywords: fractional Schrödinger equation, rotation, nonlocal nonlinear interaction, rotating Lagrangian
coordinates, Gaussian-sum solver, ground state, dynamics

1. Introduction

Recently, a great deal of attention has been directed towards the derivation of a powerful generalization
of PDEs through the inclusion of fractional order operators. These developments now impact strongly most
areas of physics and engineering [43, 46, 51, 66]. Additionally, some new applications are also emerging in
biology, molecular dynamics, finance, etc. Due to the fact that extremely important applications are related
to these models, a significative effort has been made in the last few years to obtain some mathematical
properties and numerical tools [43] for the generalized systems of PDEs. An example of such a keen interest
is the recent Journal of Computational Physics [51] special issue in 2015 that is dedicated to “Fractional
PDEs: Theory, Numerics, and Applications”. The aim of this paper is to contribute to this new hot area
for fractional quantum physics, with possible applications, e.g. in Bose-Einstein condensation (BEC).
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During the last decades, the classical Schrödinger Equation (SE) has been widely investigated and applied
to many areas in physics (optics, electromagnetic, superfluidity, etc.). It is known as the fundamental
equation of classical quantum mechanics which can be interpreted by the Feynman path integral approach
over Brownian-like quantum paths [37]. Lately, Laskin extended the Feynman path integral approach over
the more general Lévy-like quantum paths and derived a Fractional Schrödinger Equation (FSE), which
modifies the SE by involving the fractional Laplacian (−∆)s [55, 56, 57, 58]. The FSE was then applied to
represent the Bohr atom, fractional oscillator [58], and it is a new fractional approach to study the quantum
chromodynamics (QCD) problem of quarkonium [55]. The FSE also arises in the continuum limit of the
discrete SE with long-range dispersive interaction [52], in the mathematical description of boson stars [32]
and in some models of water wave dynamics [48]. It has also been proposed to study BEC of which the
particles obey a non-Gaussian distribution law [34, 74, 75], where FSE was named as Fractional Gross-
Pitaevskii Equation (FGPE) and BEC as Fractional BEC (FBEC). Compared with the SE, the literature
on FSE is quite limited but growing quickly to understand its mathematical and physical properties.

More precisely, we consider here the following generalized dimensionless (space-)Fractional NonLinear
Schrödinger equation (FNLSE) with a rotation term and a nonlocal nonlinear interaction

i∂tψ(x, t) =

[
1

2

(
−∇2 +m2

)s
+ V (x) + β|ψ(x, t)|2 + λΦ(x, t)− ΩLz

]
ψ(x, t), (1.1)

Φ(x, t) = U ∗ |ψ(x, t)|2, x ∈ Rd, t > 0, d ≥ 2. (1.2)

In the context of BEC, this equation is also called as FGPE. Here, ψ(x, t) is the complex-valued wave-
function, t > 0 is the time variable and x ∈ Rd is the spatial coordinate. The constant m ≥ 0 denotes
the scaled particle mass, with m = 0 representing the massless particle. The parameter s > 0 is the space
fractional order characterizing the nonlocal dispersive interaction. Hereafter, we call the fractional dispersion
as superdispersion (subdispersion) for s > 1 (s < 1). In addition, the fractional kinetic operator is defined
via a Fourier integral operator(

−∇2 +m2
)s
ψ =

1

(2π)d

∫
Rd
ψ̂(k) (|k|2 +m2)seik·xdk, (1.3)

where the Fourier transform is given by ψ̂(k) =
∫
Rd ψ(x)e−ik·xdx. The potential V (x) is supposed to be

trapping, a standard example is the harmonic potential given by

V (x) =


γ2
xx

2+γ2
yy

2

2 , d = 2,

γ2
xx

2+γ2
yy

2+γ2
zz

2

2 , d = 3,
(1.4)

where γv (v = x, y, z) is the trapping frequency in the v-direction. The real-valued constants β and λ
characterize the local and nonlocal interaction strengths (positive/negative for repulsive/attractive interac-
tion), respectively. The local interaction is supposed to be cubic, but other choices may also be considered.
Concerning the nonlocal interaction (1.2), the convolution kernel U(x) can be chosen as either the kernel of
a Coulomb-type interaction or a Dipole-Dipole Interaction (DDI) [15, 18, 25]

U(x) =


1

2d−1π|x|µ , 0 < µ ≤ d− 1,

−δ(x)− 3 ∂nn

(
1

4π|x|

)
,

− 3
2

(
∂n⊥n⊥ − n2

3∇2
⊥
) (

1
2π|x|

)
,

⇐⇒ Û(k) =


C

|k|d−µ , 0 < µ ≤ d− 1, Coulomb,

−1 + 3(n·k)2

|k|2 , 3D DDI,

3[(n⊥·k)2−n2
3|k|

2]
2|k| , 2D DDI,

(1.5)

where C = πd/2−121−µΓ(d−µ2 )/Γ(µ2 ) (Γ(t) :=
∫∞

0
xt−1e−xdx is the Gamma function), n = (n1, n2, n3)T ∈ R3

is a unit vector representing the dipole orientation and n⊥ = (n1, n2)T . In addition, Lz = −i(x∂y − y∂x) =
−i∂θ is the z-component of the angular momentum, Ω represents the rotating frequency.

The FNLSE conserves two important physical quantities (see Section 4.1): the mass

N (ψ(·, t)) := N (t) :=

∫
Rd
|ψ(x, t)|2dx ≡ N (0), (1.6)
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and the energy

E(ψ(·, t)) =: E(t) =

∫
Rd

[1

2
ψ̄
(
−∇2 +m2

)s
ψ + V (x)|ψ|2 +

β

2
|ψ|4 +

λ

2
Φ|ψ|2 − Ωψ̄Lzψ

]
≡ E(0). (1.7)

Here, ψ̄ is the complex conjugate of ψ. The ground states φg(x) of the FNLSE (1.1) are defined by

φg(x) = arg min
φ∈S
E(φ), S = {φ ∈ C| ‖φ‖2 = 1, E(φ) <∞}, (1.8)

where ‖φ‖2 is the L2(Rd)-norm of φ.
The FNLSE (1.1) brings together a wide range of Schrödinger-type PDEs. When s = 1 and m = 0,

FNLSE reduces to the standard nonlinear Schrödinger equation (NLSE), which has been extensively studied
both theoretically and numerically [3, 4, 6, 7, 8, 11, 14, 15, 16, 17, 18, 21, 24, 29]. For s ∈ (0, 1) and Φ
taken as the Coulomb potential, (1.1) reduces to the generalised semi-relativistic Hartree equation. The
corresponding Cauchy problem (for s ∈ [ 1

2 , 1]) as well as its ground state properties (for s = 1
2 ) have been

partially investigated [1, 25, 27, 32, 39, 59, 28, 60, 62]. Nevertheless, to the best of our knowledge, there
are neither theoretical nor numerical studies on the ground state properties for s > 0 other than the cases
s = 1/2 and 1. When s ∈ (0, 1) and m = λ = Ω = 0, it reduces to the FNLSE that is originally derived by
Laskin [55]. Since then, the FNLSE has attracted an increasing attention. Stationary states and dynamics
properties have been partially considered in some special cases. We refer to [26, 36, 42, 47, 67, 68, 69, 70] and
references therein for more details. For the superdispersion case, i.e. s > 1, there are few Schrödinger-type
equations, while it is quite common for the superdiffusion equations [46]. We consider here this case for
some possible eventual physical applications.

In general, it is difficult to obtain analytical solutions for the FNLSE. Even for the simplest case with
a box potential, there is still a controversy over the eigenpair solutions [19, 20, 44, 45, 49] . Therefore,
to develop some accurate numerical methods is crucial and would provide a powerful tool to understand
fractional quantum mechanics. However, there are limited numerical studies so far. Amore et al. [2]
proposed a collocation method and Wang et al. [76] developed an energy conserving Crank-Nicolson finite
difference (FD) scheme for Ω = λ = 0. Nevertheless, the Crank-Nicolson scheme is nonlinearly implicit and
requires heavy inner iterations. Worse still, the nonlocal nature of the fractional Laplacian naturally leads
to dense matrix representation and it hinders efficient computations. Recently, the time-splitting Fourier
pseudo-spectral method was adapted to study the dynamics when Ω = λ = 0 [53, 54]. When the nonlocal
interaction is present (i.e. λ 6= 0), for the three-dimensional semi-relativistic Hartree equation (µ = 1
in (1.5)), Bao and Dong [13] proposed a sine pseudo-spectral method to compute its ground states and
dynamics, where the nonlocal Coulomb potential Φ (1.2) satisfies the following Poisson equation

−∆Φ = |ψ|2, x ∈ R3, with lim
|x|→∞

Φ(x) = 0. (1.9)

Similar ideas were applied to nonlocal DDI in NLSE [11, 12]. However, due to the slow polynomial decay
property of Φ at the far-field, a quite large computational domain is necessary to guarantee a satisfactory
accuracy. Up to now, most existing numerical methods are proposed for non-rotating FNLSE with s ≤ 1.
As far as we know, there were neither theoretical nor numerical methods for the generalized FNLSE (1.1)
for s 6= 1 and λΩ 6= 0. The difficulties to develop an accurate and efficient scheme lie in the evaluation of
the nonlocal interaction Φ (1.2) and proper treatment of the rotation term Lzψ.

To compute the nonlocal interaction, Jiang et al. [50] recently proposed an accurate NonUniform Fast
Fourier Transform (NUFFT)-based algorithm in the Fourier domain within O(N logN) arithmetic oper-
ations (N being the total number of grid points). This solver is more accurate than the PDE approach
(1.9) and has been recently integrated within the gradient flow algorithm and time-splitting scheme for
computing the ground state and dynamics of NLSE [15, 18]. However, this solver is not ideal because of
the large pre-factor in O(N logN), and it is rather slow for 3D problems. Very recently, by approximat-
ing the kernel U(x) with the summation of a finite number of Gaussians, Zhang et al. [35] proposed a
Gaussian-sum (GauSum)-based method to evaluate Φ in the physical space. The algorithm also achieves a
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spectral accuracy, requires O(N logN) operations and obtains a speed-up factor around 3-5 compared with
the NUFFT-based algorithm. Concerning the rotation term, Antoine and Duboscq [5, 8] proposed a robust
preconditioned Krylov subspace spectral solver for the ground state computation of the NLSE with large Ω
and β. For the dynamics of the NLSE with a rotation term, Bao et al. [16] developed a rotating Lagrangian
coordinates transformation method to reformulate the rotating term into a time-dependent trapping poten-
tial in the rotating Lagrangian coordinates, which allows for the implementation of high-order time-splitting
schemes for the new NLSE [22].

The main objectives of this paper are threefold.

1. Investigate theoretically the existence of the ground states of the general FNLSE (1.1) with respect
to the fractional order s and the rotation speed Ω. Develop the dynamical laws for the centre of mass
as well as other standard dynamical quantities for general s and arbitrary Ω, and compare them with
the ones derived in [53].

2. Develop some efficient and accurate numerical methods for computing the ground states and dynamics
of the general FNLSE (1.1) by incorporating the GauSum solver into the adapted version of the gradient
flow and time-splitting Fourier pseudo-spectral method. The preconditioned Krylov subspace iteration
[5] and the rotating Lagrangian transformation technique [16] will be also integrated into the numerical
methods for the ground state computation and dynamics simulation, respectively.

3. Apply our numerical methods to study some interesting behavior, such as the influence of the nonlocal
dispersion on the ground states and the vortex pattern as well as possible dynamical properties such
as chaos and decoherence.

The rest of the paper is organized as follows. In Section 2, we briefly review the Gaussian Sum method.
The ground state computation, including the ground states properties and numerical methods as well as
numerical results are presented in Section 3. In Section 4, we derive some dynamical laws for some global
physical quantities that are usually considered for the standard NLSE. We then propose an efficient and
robust numerical method for the dynamics simulation. Some numerical results are also reported. Finally, a
conclusion and some discussions are developed in Section 5.

2. Brief review of the Gaussian-Sum (GauSum) method

With the strong confining potential, the density ρ := |ψ|2 is smooth and decays exponentially fast.
Therefore, we can reasonably truncate the whole space to a bounded domain, e.g., a square box BL :=
[−L,L]d. The density is then rescaled to be compactly supported in a unit box B1, which is now the
computational domain. One of the key ideas is to use a GauSum approximation of the kernel U (see UGS

in (2.5)) to reformulate the potential into two integrals, namely, the long-range regular integral and the
short-range singular integral. To be precise, we can reformulate the potential (1.2) as follows

Φ(x) ≈
∫
B1

U(x− y) ρ(y)dy =

∫
B2

U(y) ρ(x− y)dy (2.1)

=

∫
B2

UGS(y) ρ(x− y)dy +

∫
Bδ

(
U(y)− UGS(y)

)
ρ(x− y)dy + Iδ (2.2)

:= I1(x) + I2(x) + Iδ, x ∈ B1, (2.3)

where

Iδ =

∫
B2\Bδ

(
U(y)− UGS(y)

)
ρ(x− y)dy, (2.4)

with Bδ := {x
∣∣|x| ≤ δ} being a small neighbourhood of the origin with radius δ ∼ 10−4 − 10−3 and UGS is

given explicitly as follows

UGS(y) = UGS(|y|) :=

Q∑
q=0

wq e
−τ2

q |y|
2

, Q ∈ N+, (2.5)
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with weights and nodes {(wq, τq)}Qq=0. Here, UGS designates an accurate approximation of U , up to ε0 ∼
10−14 − 10−16, within the interval [δ, 2], i.e.

‖U(r)− UGS(r)‖L∞([δ,2]) ≤ ε0. (2.6)

For (2.4), we have |Iδ| ≤ Cε0 δ
d ‖ρ‖L∞ . Thus the remainder integral Iδ is negligible and is omitted here.

Note that the GauSum approximation can be numerically computed with sinc quadrature and we refer to
[35] for more details.

To compute the regular integral I1, plugging the explicit GauSum approximation (2.5) into I1(x) yields

I1(x) =

Q∑
q=0

wq

∫
B2

e−τ
2
q |y|

2

ρ(x− y)dy, x ∈ B1. (2.7)

For x ∈ B1 and y ∈ B2, we have x − y ∈ B3 and we can approximate the density on B3 by finite Fourier
series. More specifically, the density ρ is well approximated by Fourier series after zero-padding to B3 as
follows

ρ(z) ≈
∑
k

ρ̂k

d∏
j=1

e
2πi kj
bj−aj

(zj−aj)
, z = (z1, . . . , zd) ∈ B3, (2.8)

where aj = −3, bj = 3, j = 1, . . . , d and k ∈ Zd. After some careful calculations, we have

I1(x) =
∑
k

ρ̂k

(
Q∑
q=0

wqG
q
k

)
d∏
j=1

e
2πi kj
bj−aj

(xj−aj)
, (2.9)

where

Gqk =

d∏
j=1

∫ 2

−2

e−τ
2
q |yj |

2

e
−2πikj yj
bj−aj dyj =

d∏
j=1

∫ 2

0

2 e−τ
2
q |yj |

2

cos(
2πkj yj
bj−aj )dyj , (2.10)

can be pre-computed once for all if the potential is computed on the same grid.
For the near-field correction integral I2, within the small ball Bδ, the density function ρx(y) := ρ(x−y)

is approximated by a low-order Taylor expansion as follows

ρx(y) ≈ Px(y) = ρx(0) +

d∑
j=1

∂ρx(0)

∂yj
yj +

1

2

d∑
j,k=1

∂2ρx(0)

∂yj∂yk
yj yk +

1

6

d∑
j,k,`=1

∂3ρx(0)

∂yj∂yk∂y`
yj yk y`

= ρ(x) +

d∑
j=1

(∂yjρ)(x)yj+
1

2

d∑
j,k=1

(∂yjykρ)(x)yj yk+
1

6

d∑
j,k,`=1

(∂yjyky`ρ)(x)yj yk y`.(2.11)

The derivatives involved are computed by differentiating the density’s Fourier series approximation. Next,
we replace ρx(y) by its Taylor approximation Px(y) and integrate in spherical/polar coordinates. The
computation boils down to a multiplication of the Laplacian ∆ρ since the contributions of the odd-order
derivatives in (2.11) and off-diagonal components of the Hessian vanish.

To be precise of the I2 calculation, we first present for the 2D Coulomb potential case. Starting from
the density’s Fourier series approximation

ρ(x) =
∑
k

ρ̂k e
i 2πk1(x+3)

6 e
i 2πk2(y+3)

6 =
∑
k

ρ̂k ωk1
(x)ωk2

(y), x ∈ B3, (2.12)

by differentiating (2.12), we obtain the derivatives in (2.11). For example, we get ∂xyρ as follows

∂xyρ(x) =
∑
k

ρ̂k µk1
µk2

ωk1
(x)ωk2

(y), with µkj = i 2πkj/6, j = 1, 2. (2.13)
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All the other coefficients are computed likewise. Replace ρx in (2.3) by its Taylor approximation Px(y) and
integrate with respect to y, we have

I2(x) ≈
∫
Bδ

(
U(y)− UGS(y)

)
Px(y)dy :=

∫
Bδ
DGS(y) Px(y)dy

= ρ(x)

∫
Bδ
DGS(y)dy +

2∑
j=1

(∂yjρ)(x)

∫
Bδ
DGS(y) yjdy

+
1

2

2∑
j,k=1

(∂yjykρ)(x)

∫
Bδ
DGS(y) yjykdy +

1

6

d∑
j,k,`=1

(∂yjyky`ρ)(x)

∫
Bδ
DGS(y) yj yk y`dy,

where DGS(y) := U(y) − UGS(y) is radial symmetric. All the odd-oder derivative terms vanish because
the corresponding integrands are all anti-symmetric, and I2 evaluation comes down to a summation of the
even-oder derivative terms. For the second-order derivatives, the integral corresponding to ∂xyρ vanishes for
the same reason. Finally, we have

I2(x) ≈ ρ(x)

∫
Bδ
DGS(y)dy +

1

2

(
∂xxρ(x)

∫
Bδ
DGS(y)x2dy + ∂yyρ(x)

∫
Bδ
DGS(y) y2dy

)
(2.14)

= ρ(x)

∫
Bδ
DGS(y)dy +

1

2
(∆ρ)(x)

∫
Bδ
DGS(y)x2dy, x ∈ R2. (2.15)

The last identity holds because
∫
Bδ DGS(y)x2dy =

∫
Bδ DGS(y)y2dy. The two integrals in (2.15) are precom-

puted analytically once for all in polar coordinates. The I2 evaluation comes down to a summation of the
density and its Laplacian. As for the 3D Coulomb potential case, I2 can be computed in a similar way as
the 2D case. After plugging Taylor expansion approximation Px(y) and integrating over Bδ ⊂ R3, we have

I2(x) ≈ ρ(x)

∫
Bδ
DGS(y)dy +

1

2
(∆ρ)(x)

∫
Bδ
DGS(y)x2dy, x ∈ R3. (2.16)

The GauSum method achieves a spectral accuracy and is essentially as efficient as FFT algorithms within
O(N logN) arithmetic operations. The algorithm was implemented for the Coulomb-type kernels in [35].
The evaluations of 2D and 3D DDIs boil down to the Coulomb potential evaluation with modified densities.
More explicitly, the DDIs can be reformulated as follows

Φ(x) = −3

2

(
∂n⊥n⊥ − n2

3∇2
⊥
)( 1

2π|x|

)
∗ ρ =

(
1

2π|x|

)
∗
(
−3

2
(∂n⊥n⊥ρ− n2

3∇2
⊥ρ)

)
, x ∈ R2, (2.17)

Φ(x) = −(n · n)ρ(x) + ∂nn

(
1

4π|x|

)
∗ ρ = −(n · n)ρ(x) +

1

4π|x|
∗ (∂nnρ) , x ∈ R3. (2.18)

To compute the DDIs, we just need to substitute the modified densities, i.e. − 3
2 (∂n⊥n⊥ρ − n2

3∇2
⊥ρ) and

(∂nnρ) for ρ in (2.1) for the 2D and 3D cases respectively. The modified densities are also computed via a
similar Fourier series approximation procedure as shown in (2.13).

3. Ground state computation: properties, numerical scheme and simulations

In this section, we first prove some results related to the existence/non-existence of the ground states
(subsection 3.1). We next propose in subsection 3.2 an efficient and accurate numerical method for computing
the ground states by combining the normalized gradient flow which is discretized by the semi-implicit
backward Euler Fourier pseudo-spectral method and the Gaussian-Sum nonlocal interaction solver. We
shall refer to this new method as GF-GauSum hereafter. Finally, subsection 3.3 reports some simulations
of the ground states to show some special features related to FNLSEs.
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3.1. Existence and nonexistence of the ground states

To simplify the presentation, we divide the energy functional E(φ) (1.7) into five parts, i.e. the kinetic,
potential, rotating, local and nonlocal interactions energy parts

E(φ(x)) = Ekin(φ) + Epot(φ) + Erot(φ) + Eint(φ) + Enon(φ), (3.1)

where

Ekin(φ) :=
1

2

〈(
−∇2 +m2

)s
φ, φ

〉
, Epot(φ) := 〈V (x)φ, φ〉,

Erot(φ) = −Ω〈Lzφ, φ〉, Eint(φ) :=
β

2
〈|φ|2, |φ|2〉, Enon(φ) :=

λ

2
〈Φ, |φ|2〉,

with 〈f, g〉 =
∫
Rd f ḡ dx. We first prove some properties of the energy functional E(φ(x)) for any φ ∈ S.

Lemma 3.1. If the convolution kernel U(x) in (1.5) is chosen as the Coulomb-type interaction and V is
the harmonic potential defined by (1.4), we have the following properties

(i) For any positive ε > 0, we have for φ ∈ S∣∣∣〈Φ, ρ〉∣∣∣ =
∣∣∣〈U(x) ∗ ρ, ρ

〉∣∣∣ ≤ ε‖∇φ‖22 + Cε, (3.2)

where Cε is a real-valued constant that depends only on d, µ and ε.

(ii) When s > 1, for any m ≥ 0 and φ ∈ S, we have∫
Rd

[1

8
φ̄
(
−∇2 +m2

)s
φ+

(
V (x)− γ2

r |x|2

2

)
|φ|2 +

β

2
|φ|4

]
dx + C1 ≤ E(φ)

≤
∫
Rd

[7

8
φ̄
(
−∇2 +m2

)s
φ+

(
V (x) +

γ2
r |x|2

2

)
|φ|2 +

β

2
|φ|4

]
dx + C2, (3.3)

where γr = min{γx, γy}, C1 and C2 are two constants that only depend on Ω, s, γr, d and µ.

Proof. (i) Using the Hardy-Littlewood-Sobolev (HLS) inequality, we have for the Coulomb-type interaction∣∣∣〈Φ, ρ〉∣∣∣ =
∣∣∣〈U(x) ∗ ρ, ρ

〉∣∣∣ =
1

2d−1π

∫
Rd

∫
Rd

ρ(x)ρ(y)

|x− y|µ
dxdy ≤ cd,µ‖ρ‖2p = cd,µ‖φ‖42p, (3.4)

where 1 < p = 2d
2d−µ ≤

2d
d+1 < 2 and the constant cd,µ depends only on d and µ. For the 3D case, i.e d=3,

let us introduce σ = 3−p
2p . By the Hölder’s inequality [61], we have∣∣∣〈Φ, ρ〉∣∣∣ ≤ cd,µ(‖φ‖σ2 ‖φ‖1−σ6

)4

= cd,µ

(
‖φ‖26

)2(1−σ)

. (3.5)

Now that µ ≤ d− 1, we have 0 < 2(1− σ) = µ
2 ≤ 1. Therefore, by Young’s inequality [61], for any constant

ε̃ > 0, there exist constants Cε̃ only dependent on such that(
‖φ‖26

)2(1−σ)

≤ 2(1− σ) ε̃ ‖φ‖26 + (2σ − 1)ε̃
2σ−2
2σ−1 . (3.6)

Thus, together with the Sobolev inequality ([61], Chapter 8 eq. (1)), i.e., there exist constant C such that

‖φ‖26 ≤ C‖∇φ‖2, (3.7)

we obtain ∣∣∣〈Φ, ρ〉∣∣∣ ≤ 2(1− σ) cd,µ ε̃ C ‖∇φ‖2 + (2σ − 1)cd,µε̃
2σ−2
2σ−1 =: ε ‖∇φ‖2 + Cε (3.8)
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Similarly, for the 2D case, let q = 4p
2−p > 2p > 2 and σ = q−2p

p(q−2) . Then, one gets∣∣∣〈Φ, ρ〉∣∣∣ ≤ cd,µ(‖φ‖σ2 ‖φ‖1−σq

)4

= cd,µ

(
‖φ‖2q

)2(1−σ)

≤ ε̃ ‖φ‖2q + C̃ε ≤ ε ‖∇φ‖22 + Cε. (3.9)

(ii) Let γr = min{γx, γy}. By Young’s inequality and Plancherel’s formula, we have∣∣∣Ω ∫
Rd
φ̄Lzφ dx

∣∣∣ ≤ ∫
Rd

[∣∣(γrxφ̄) (Ω∂yφ/γr)
∣∣+
∣∣(γryφ̄) (Ω∂xφ/γr)

∣∣dx]
≤ γ2

r

2

∫
Rd
|x|2|φ|2dx +

Ω2

2γ2
r

∫
Rd

∣∣∇φ∣∣2 dx =
γ2
r

2

∫
Rd
|x|2|φ|2dx +

Ω2

2γ2
r (2π)d

∫
Rd
|k|2|φ̂|2dk

≤ γ2
r

2

∫
Rd
|x|2|φ|2dx +

Ω2

2γ2
r (2π)d

∫
Rd

[γ2
r (|k|2 +m2)s

2Ω2
+
( γ2

r

2Ω2

) 1
1−s
]
|φ̂|2 dk− Ω2m2

2γ2
r

≤ γ2
r

2

∫
Rd
|x|2|φ|2dx +

1

4

∫
Rd
φ̄
(
−∇2 +m2

)s
φdx + C. (3.10)

Similarly, for the Coulomb-type nonlocal interaction, we obtain∣∣∣λ
2

〈
Φ, ρ

〉∣∣∣ ≤ ε̃‖∇φ‖22 + C̃ε =
ε̃

(2π)d

∫
Rd
|k|2 |φ̂|2 dk + C̃ε ≤

1

(2π)d

∫
Rd

[1

8
(|k|2 +m2)s + C

]
|φ̂|2 dk

=
1

8

∫
Rd
φ̄
(
−∇2 +m2

)s
φdx + C. (3.11)

Therefore, the inequality (3.3) follows from (3.10) and (3.11). �

Theorem 3.1. If V (x) is a trapping harmonic potential defined in (1.4), then the following properties hold.

(i) If s > 1 and β ≥ 0, then there exists a ground state of the FNLSE for all Ω > 0 if one of the following
conditions holds:

(A) U(x) reads as either Coulomb-type.

(B) For 3D DDI: −β/2 ≤ λ ≤ β.
(C) For 2D DDI: (c1) λ = 0. (c2) λ > 0 and n3 = 0. (c3) λ < 0 and n2

3 ≥ 1
2 .

(ii) If Ω = 0, β ≥ 0 and λ ≥ 0, then the ground state of the FNLSE exists for all s > 0.

(iii) If 0 < s < 1, there exists no ground state if one of the following conditions holds

(A) ∀ Ω > 0, λ = 0.

(B) ∀ Ω > 0, U(x) is a Coulomb-type interaction or a 3D DDI.

(C) U(x) is the 2D DDI, ∀ Ω > Ω0 = c|λ| 25 with c =
( (2π2+1)4γ6

48eπ9

) 1
5 (≈ 0.54 for γ = 1). Here,

γ = max{γx, γy}.

Proof: (i) For the Coulomb-type interaction, it is clear by Lemma 3.1 that the energy functional E is
bounded below, coercive and weakly lower semi-continuous on S. Hence, (A) follows. For the DDI, the
proof is similar as those for the non-fractional case [10, 12] by noticing (3.10). Similar arguments lead to
(ii).

(iii) Denote γ = max{γx, γy}. In 2D, we choose the function

φn(x) = F−1(φ̂n)(x), with φ̂n(k) = F(φn)(k) =
(
4πεn+1

)1/2
(n!)−1/2exp(−ε|k|2/2)|k|neinθ. (3.12)
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By Plancherel’s formula, it is easy to check that ‖φn‖2 = 1
2π‖φ̂n‖2 = 1, and thus φn ∈ S. Let ρn = |φn|2.

By Young’s inequality and Cauchy-Schwarz inequality, we obtain

E1(φn) =: Ekin(φn) + Epot(φn) + Erot(φn)

≤ 1

4π2

[
1

2
〈(|k|2 +m2

)s
φ̂n, φ̂n〉 −

γ2

2
〈∆φ̂n, φ̂n〉 − iΩ〈Ĵzk φ̂n, φ̂n〉

]

≤ em
2ε

2εs
Γ(n+ 1 + s)

Γ(n+ 1)
+

(
εγ2

2
− Ω

)
n+

εγ2

2
, (3.13)

|Eint(φn)| =
|β|
2
‖ρn‖22 =

|β|
2(2π)6

‖φ̂n ∗ φ̂∗n‖22 ≤
|β|

2(2π)4

(
1

(2π)2
‖φ̂n‖22

)
‖̂̄φn‖21

=
|β|

2(2π)4
‖φ̂n‖21 =

|β|
2πε

2n
(
Γ(n/2 + 1)

)2
Γ(n+ 1)

. (3.14)

Furthermore, we compute the nonlocal interaction energy Enon(φn). For the Coulomb-type interaction, by
using the HLS inequality (3.4) and the Hölder’s inequality, we obtain

∣∣Enon(φn)
∣∣ ≤ cµ|λ|

2
‖ρn‖2p ≤ c̃µ‖ρn‖

2−µ
1 ‖ρn‖µ2 ≤ c̃µ

[
1

πε

2n
(
Γ(n/2 + 1)

)2
Γ(n+ 1)

]µ/2
, (3.15)

where p = 4
4−µ , 0 < µ ≤ 1, and c̃µ depends only on µ and λ. Together with the Stirling’s formula

Γ(x+ 1) ∼
√

2πx
(x
e

)x
, when x→∞, (3.16)

one gets
|Eint(φn)| ∼

√
n, |Enon(φn)| ∼

√
n, n→∞. (3.17)

Let ε < 2Ω
γ2 , ∀Ω > 0 and s < 1, we then prove that

lim sup
n→∞

E(φn) ≤ lim sup
n→∞

[
E1(φn) + |Eint(φn)|+ Enon(φn)

]
≤ lim sup

n→∞

[
c2n

s

2εs
+

(
εγ2

2
− Ω

)
n+ c1

√
n+ c0

]
= −∞, (3.18)

which implies the nonexistence of the ground states. Thus (B) follows. (A) also follows by simply setting
c1 = 0 in (3.18).

For the 2D DDI, we have∣∣Enon(φn)
∣∣ =

|λ|
8π2

∣∣〈Û ρ̂n, ρ̂n〉∣∣ ≤ |λ|
8π2

〈3(|k · n⊥|2 + n2
3|k|2)

2|k|
ρ̂n, ρ̂n

〉
≤ 3|λ|

16π2

〈
|k| ρ̂n, ρ̂n

〉
. (3.19)

By the generalized Minkowski inequality, we prove that

4π2
(〈
|k| ρ̂n, ρ̂n

〉) 1
2

=

[∫
R2

|k|
∣∣∣ ∫

R2

φ̂n(k− ξ)̂̄φn(ξ)dξ
∣∣∣2dk] 1

2

≤
∫
R2

[∫
R2

|k|
∣∣φ̂n(k− ξ)

∣∣2∣∣̂̄φn(ξ)
∣∣2dk] 1

2

dξ

=

∫
R2

∣∣̂̄φn(ξ)
∣∣ [∫

R2

|k− ξ|
∣∣φ̂n(k)

∣∣2dk] 1
2

dξ ≤
∫
R2

∣∣̂̄φn(ξ)
∣∣ [∫

R2

(|k|+ |ξ|)
∣∣φ̂n(k)

∣∣2dk] 1
2

dξ

≤
∫
R2

∣∣̂̄φn(ξ)
∣∣ [√|ξ|+ (∫

R2

|k|
∣∣φ̂n(k)

∣∣2dk) 1
2

]
dξ =

(∥∥√|k| φ̂n∥∥1
+
∥∥φ̂n∥∥1

‖
√
|k| φ̂n‖2

)

=
π

1
2 2

n
2 + 9

4

ε
3
4

Γ(n2 + 5
4 )√

Γ(n+ 1)
+
π

5
2 2

n
2 +3

ε
3
4

√
Γ(n+ 3

2 ) Γ(n2 + 1)

Γ(n+ 1)
. (3.20)
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Again, by the Stirling’s formula (3.16), we show that

|Enon(φn)| - c3|λ|
ε3/2

n, n→∞, (3.21)

where c3 = 3
√

2(2π2+1)2

32π 4
√
eπ

. Let us set ε =
(

3c3|λ|/γ2
) 2

5

and Ω > Ω0 =
( (2π2+1)4γ6

48eπ9

) 1
5 |λ| 25 . It follows that

lim sup
n→∞

E(φn) ≤ lim sup
n→∞

[
c2n

s

2εs
+

(
εγ2

2
+
c3

ε
3
2

− Ω

)
n+ c1

√
n+ c0

]
= −∞,

leading to the nonexistence of the ground states. Hence (C) follows.

In 3D, we choose the sequence
φ3D
n (x) = φn(x, y)φ(z), (3.22)

where φ(z) =
(
γz
π

)1/4
exp{−γzz

2

2 } and φn(x, y) = F−1(φ̂n(k)), with φ̂n(k) reading as (3.12). Then, the
argument proceeds similarly as those in 2D for the 3D Coulomb potential. As for the 3D DDI, noticing that

|Enon(φ3D
n )| ≤ 3|λ|

2
‖φ3D

n ‖44 =
3|λ|√γz
2
√

2π
‖φn‖44 =

3|λ|√γz
2
√

2π
‖ρn‖22, (3.23)

the left argument proceeds similarly as those in 2D from (3.14).
�

Remark 3.1. For the 2D DDI, one open question concerns the plausible fact that (iii)(B) in Theorem (3.1)
maybe hold for ∀ Ω0 > 0. The proof presented here does not seem to be directly applicable for this conjecture.

Remark 3.2. It might be interesting to understand the existence/non-existence and the uniqueness of the
ground states for the more general FNLSE

i∂tψ =

[
1

2
(−∇2 +m2)s +

1

2
γ2
r |x|p + β|ψ|q + λΦ− ΩLz

]
ψ, (3.24)

where the constants β and λ can be positive or negative and the powers p and q are real-valued positive
constants. We leave it as an open problem for some future studies.

3.2. Numerical method

For a constant time step ∆t, we introduce the discrete times tn = n∆t for n = 0, 1, 2, . . . The gradient
flow with discrete normalization (GFDN) method reads as

∂tφ(x, t) = −
[

1

2
(−∇2 +m2)s + V (x) + β|φ|2 + λΦ(x, t)− ΩLz

]
φ(x, t), (3.25)

Φ(x, t) =
(
U ∗ |φ|2

)
(x, t), x ∈ Rd, tn ≤ t < tn+1, (3.26)

φ(x, tn+1) =
φ(x, t−n+1)

‖φ(x, t−n+1)‖2
, x ∈ Rd, n ≥ 0, (3.27)

with the initial data
φ(x, 0) = φ0(x), x ∈ Rd, with ‖φ0‖2 = 1. (3.28)

Let φn(x) and Φn(x) be the approximations of φ(x, tn) and Φ(x, tn), respectively. The above GFDN is
usually discretized in time via the semi-implicit backward Euler method [5, 15, 18, 78]

φ(1)(x)− φn(x)

∆t
= −

[
1

2
(−∇2 +m2)s + V (x) + β|φn|2 + λΦn(x)− ΩLz

]
φ(1)(x), (3.29)

Φn(x) =
(
U ∗ |φn|2

)
(x), x ∈ Rd, (3.30)

φn+1(x) =
φ(1)(x)

‖φ(1)(x)‖2
, x ∈ Rd, n ≥ 0. (3.31)
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The ground states decay exponentially fast due to the trapping potential. Therefore, in practical compu-
tations, we first truncate the whole space to a bounded rectangular domain and impose periodic boundary
conditions. Then, we discretize the equation (3.29) via the Fourier pseudo-spectral method in space and
evaluate the nonlocal interaction Φn(x) by the GauSum solver. The full discretized scheme of system (3.29)-
(3.31) can then be solved by a fixed-point iteration or a preconditioned Krylov subspace solver with a similar
preconditioner as those in [5]. Let us define the operators

ABE,n :=
I

∆t
+

1

2
(−∇2 +m2)s + V (x) + β|φn|2 + λΦn(x)− ΩLz, (3.32)

PBE
∆ =

[
I

∆t
+

1

2
(−∇2 +m2)s

]−1

, ABE,n
TF = V (x) + β|φn|2 + λΦn(x)− ΩLz, (3.33)

PBE,n
TF =

[
I

∆t
+ V (x) + β|φn|2 + λΦn(x)

]−1

, ABE,n
∆,Ω =

1

2
(−∇2 +m2)s − ΩLz. (3.34)

Moreover, we denote by I, ABE,n, PBE
∆ , ABE,n

TF , PBE,n
TF , ABE,n

∆,Ω the discretized versions of the above operators,

and by φ(1) and φn the discretization of φ(1) and φn through the Fourier pseudo-spectral approximation.
Then, the finite-dimensional linear system corresponding to (3.29)-(3.31) reads as

ABE,nφ(1) = bn := φn/∆t. (3.35)

Two preconditioned versions of the linear system are the following(
I + PBE

∆ ABE,n
TF

)
φ(1) = PBE

∆ bn, or
(
I + PBE,n

TF ABE,n
∆,Ω

)
φ(1) = PBE,n

TF bn. (3.36)

We refer the reader to [5] for more details and omit them here for brevity. Like in the standard case [5, 8],
the most efficient solver uses the first preconditioned system (left) in (3.36) based on PBE

∆ . In particular,
the acceleration of the convergence of the Krylov subspace solver (BiCGStab) is visible when Ω, β and λ
are large. In practice, we use this preconditioned solver in subsection 3.3.

3.3. Numerical results

In this subsection, we report some numerical results concerning the ground states of (1.1)-(1.2) computed
by the GF-GauSum solver built in the previous subsection. To this end, unless stated, we fix m = 0 and
d = 2. We carry out the computation on the domain B = [−32, 32] × [−32, 32] that is discretized with
uniform mesh sizes hx = hy = 1

8 . We use a constant time step ∆t = 10−3. The trapping potential V (x)
is chosen as (1.4) with γx = γy = 1. The nonlocal interaction is of Coulomb-type with µ = 1. The initial
guess φ0(x) is chosen as

φ0(x) =
(1− Ω)φho(x) + Ωφvho(x)

‖(1− Ω)φho(x) + Ωφvho(x)‖
, with φho(x) =

1√
π
e−
|x|2

2 , φvho(x) =
x+ iy√

π
e−
|x|2

2 , x ∈ B. (3.37)

The ground state φg(x) is reached when the stopping criterion holds: ‖φn(x)− φn+1(x)‖∞ ≤ ε0 ∆t. In the
computations, we choose the accuracy parameter ε0 = 10−9.

Example 3.1. Non-rotating FNLSE. Here, we impose Ω = 0. We study the ground states of the follow-
ing four cases:

• Case I. Linear case, i.e. β = λ = 0.

• Case II. Purely long-range interaction, i.e. β = 0 and λ = 10.

• Case III. Purely short-range interaction, i.e. β = 10 and λ = 0.

• Case IV. Both long-range and short-range interactions, i.e. λ = β = 10.
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Figure 1: Slice plots of φg(x, 0) for Cases I–IV (from left to right) for subdispersion s ≤ 1 (top row) and superdispersion
s ≥ 1 (bottom) in example 3.1.

Figure 1 shows the slice plots of the ground states along the x-axis, i.e. φg(x, 0), for different fractional
orders s of the FNLSE.

Example 3.2. Non-rotating FNLSE with harmonic + optical lattice potential. Here, we choose
Ω = 0. We consider the ground states of the FNLSE in a harmonic plus optical lattice potential with different
parameters. To this end, we let λ = 64 and β = 0 and choose the potential as

V (x, y) =
x2 + y2

2
+ 10

(
sin2(πx) + sin2(πy)

)
.

The spatial mesh sizes are chosen as hx = hy = 1
32 in this case. Figure 2 shows the contour plot of the

ground state density ρg := |φg(x)|2 and the slice plot of φg(x, 0) with different fractional orders s.
From Figures 1–2 and additional results not shown here, we can conclude that (i) The ground states be-

come more peaked and narrower as the fractional order s tends smaller, which corresponds to subdispersion.
(ii) A large fractional order helps in smoothing out the density profile (cf. Fig. 2) for the superdispersion
case. (iii) The repulsive local/nonlocal interactions suppress the “focus” or “homogenization” effect as the
dispersive order s tends smaller or larger. In other words, the repulsive nonlinear interaction helps to sta-
bilize the ground states. (iv) When β and/or λ are/is large, the nonlinear interaction dominates and the
dispersive effect can be neglected.

Example 3.3. Rotating FGPE. In this example, we present the ground states of the rotating FGPE with
only local nonlinear interaction, i.e. λ = 0 and β = 100.

We propose to numerically study the dependence of the first critical rotating velocity Ωc to create a
vortex with respect to the fractional dispersive order s. Figure 3 shows this relation derived by a linear
regression

Ωc(s) ≈ −0.02634 s2 + 0.19393 s+ 0.21071. (3.38)

Figure 4 displays the contour plots of the ground state density ρg for different values of Ω but with s = 1.2
(superdispersion), while fig 5 shows those for different values of fractional order s but with Ω = 1.35.
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Figure 2: Contour plots of the density of the ground state φg(x, y) and the slice plot of φg(x, y = 0) in example 3.2.

From Figure 3-5 and additional results not shown here, we can conclude that (i) The first critical rotating
velocity Ωc depends almost linearly on s. (ii) For the superdispersion case, i.e. s > 1, the ground states exist
for all velocities Ω. As Ω increases, the ground states will undergo three phase transitions (similar to the
non-fractional GPE with quartic order trapping potential), i.e., from Gaussian-type to one-vortex profile,
from vortex lattice to vortex-lattice with a hole at the center and then to a giant vortex. (iii) For fixed Ω.

It would be interesting to study how these critical rotating frequencies for the transitions depend on s
and how they compare with those in the case of the standard GPE.

1 1.45 1.9

0.38

0.43

0.48

s

Ω
c

 

 

  numerical data

  fitting curve

Fitting equation:

Ω
c
(s) ≈ −0.02634 s

2
+0.19393 s+0.21071

Figure 3: Critical rotating frequency vs. the fractional order s in example 3.3.

4. Dynamics computation: properties, numerical scheme and simulations

In this section, we first present analogous dynamical laws for some commonly used quantities in the
classical rotating GPE. Then, we extend the rotating Lagrangian coordinates transform proposed for the
standard GPE [16] to the FGPE. In the rotating Lagrangian coordinates, the rotation term vanishes, giving
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Figure 4: Contour plots of the density |φg(x)|2 in example 3.3 (superdispersion).

Figure 5: Contour plots of the density |φg(x)|2 in example 3.3 (superdispersion).

rise to a time-dependent potential. Based on the new FNLSE, we propose a time-splitting Fourier pseudo-
spectral method incorporated with the GauSum solver to simulate the dynamics.
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4.1. Dynamical properties

Here we study the dynamical properties of the mass, energy, angular momentum expectation and center
of mass [16]. The dynamical laws can be used as benchmarks to test the numerical methods and are
briefly listed here. For details, one can either refer to appendices or to [73] for analogous proofs to their
non-fractional counterparts.
Mass and energy. The FNLSE (1.1)-(1.2) conserves the mass (1.6) and the energy (1.7), i.e.

N (t) = N (t = 0), E(t) = E(t = 0). (4.1)

Proof: It is straightfoward to prove in a similar way as their non-fractional counterparts [73] by using the
Plancherel’s formula. �

Angular momentum expectation. The angular momentum expectation is defined as

〈Lz〉(t) =

∫
Rd
ψ̄(x, t)Lzψ(x, t) dx, t ≥ 0. (4.2)

Lemma 4.1. The angular momentum expectation 〈Lz〉(t) satisfies the following equation

d

dt
〈Lz〉(t) =

∫
Rd
|ψ|2(y∂x − x∂y)

(
V (x) + λΦ(x, t)

)
dx. (4.3)

This implies that the angular momentum expectation is conserved, i.e.

〈Lz〉(t) = 〈Lz〉(0), t ≥ 0, (4.4)

when V (x) is radially/cylindrically symmetric in 2D/3D and one of the following conditions holds: (i)
λ = 0, (ii) λ 6= 0, Φ(x) is the Coulomb potential or (iii) λ 6= 0, Φ(x) is the dipole potential with dipole axis
n = (0, 0, 1)T , i.e. is parallel to the z-axis.

Proof. Details of the proof are given in Appendix A. �

Center of mass. The center of mass is defined by

xc(t) =

∫
Rd

x |ψ(x, t)|2dx = 〈xψ,ψ〉. (4.5)

Lemma 4.2. The center of mass xc(t) satisfies the following equations, for 0 < s ≤ 1 (subdispersion),

ẋc − ΩJxc = i
〈
G ∗ ψ,∇ψ

〉
, (4.6)

ẍc − 2ΩJ ẋc + Ω2J2xc = 2Re
(〈
G ∗ (Vψ),∇ψ

〉)
. (4.7)

Here, we set V(x, |ψ|) = V (x) + β|ψ|2 + λΦ(x, t), and

J =

(
0 1
−1 0

)
, for d = 2, J =

 0 1 0
−1 0 0
0 0 0

 , for d = 3. (4.8)

The convolution kernel G(x) reads as

G(x) =


δ(x), s = 1,

2s−d/2s
Γ(1−s)πd/2

(
m
|x|

) d
2 +s−1

K d
2 +s−1

(
m|x|

)
, 0 < s < 1,

(4.9)

where δ(x) is the Dirac delta function and Kv(z), the modified Bessel function of the second-kind and order
v, is given explicitly as follows

Kv(z) =
(2z)vΓ(v + 1

2 )
√
π

∫ ∞
0

cos(t)

(t2 + z2)v+ 1
2

dt. (4.10)
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Proof. A detailed proof is reported in Appendix B. �

Remark 4.1. If s = 1, V (x) is the harmonic potential (1.4) and Φ(x) is the Coulomb potential or DDI
with n = (0, 0, 1)T , then (4.7) reduces to [16, 53]

ẍc − 2ΩJ ẋc + (Ω2J2 + Λd)xc = 0, (4.11)

where

Λd =

(
γ2
x 0
0 γ2

y

)
, for d = 2, Λd =

(
Λ2 0
0 γ2

z

)
, for d = 3. (4.12)

In [53], the authors derived a dynamical law for the center of mass for the FNLSE with s ∈ ( 1
2 , 1] and

for a harmonic trapping potential. Compared with their results, the dynamical laws (4.6)-(4.7) are simpler
and hold for a general potential V (x) as well as for the full subdispersion case, i.e. ∀ s ∈ (0, 1]. It is also
interesting to explore similar equations for the superdispersion case s > 1.

Remark 4.2. We also remark here that it might be interesting to derive the dynamical laws for the con-
densate width δv which is defined as

δv(t) =

∫
Rd
v2|ψ(x)|2dx, v = x, y in 2D and v = x, y, z in 3D. (4.13)

The derivation and proof is feasible but tedious. One can refer to [73] for the analogous details.

4.2. Numerical method

In this subsection, we first introduce a coordinates transformation and reformulate the rotating FGPE
(1.1)-(1.2) in the new coordinates, eliminating hence the rotation term.

4.2.1. Rotating Lagrangian coordinates transformation

For any time t ≥ 0, let A(t) be the orthogonal rotational matrix defined as [16]

A(t) =

(
cos(Ωt) sin(Ωt)
− sin(Ωt) cos(Ωt)

)
, if d = 2, A(t) =

 cos(Ωt) sin(Ωt) 0
− sin(Ωt) cos(Ωt) 0

0 0 1

 , if d = 3. (4.14)

It is easy to check that A−1(t) = AT (t) for any t ≥ 0 and A(0) = I, where I is the identity matrix. For any
t ≥ 0, we introduce the rotating Lagrangian coordinates x̃ as [9, 16, 40]

x̃ = A−1(t)x = AT (t)x ⇔ x = A(t)x̃, x ∈ Rd, (4.15)

and we denote by φ := φ(x̃, t) the wave function in the new coordinates

φ(x̃, t) := ψ(x, t) = ψ (A(t)x̃, t) , x ∈ Rd, t ≥ 0. (4.16)

By some simple calculations, one can easily obtain

∂tφ(x̃, t) = ∂tψ(x, t) +∇ψ(x, t) ·
(
Ȧ(t)x̃

)
= ∂tψ(x, t)− Ω(x∂y − y∂x)ψ(x, t), (4.17)

(−∇2 +m2)sψ(x, t) = (−∇2 +m2)sφ(x̃, t). (4.18)

Plugging them back into (1.1)-(1.2) gives the following FNLSE in the rotating Lagrangian coordinates

i∂tφ(x̃, t) =

[
1

2
(−∇2 +m2)s +W(x̃, t) + β|φ|2 + λΦ̃(x̃, t)

]
φ(x̃, t), x̃ ∈ Rd, t > 0, (4.19)

Φ̃(x̃, t) = Ũ ∗ |φ|2, x̃ ∈ Rd, t ≥ 0. (4.20)
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Here, W(x̃, t) = V (A(t)x̃) and Ũ(x̃, t) reads as

Ũ(x̃, t) =


1

2d−1π|x̃|µ , 0 < µ < d− 1, Coulomb,

−δ(x̃)− 3 ∂m(t)m(t)

(
1

4π|x̃|

)
, 3D DDI,

− 3
2

(
∂m⊥(t)m⊥(t) −m2

3∇2
⊥
) (

1
2π|x̃|

)
, 2D DDI,

(4.21)

with m(t) ∈ R3 defined as m(t) = A−1(t)n =:
(
(m1(t),m2(t),m3(t)

)T
and m⊥(t) =

(
m1(t),m2(t)

)T
.

We can clearly see that the rotation term vanishes in the new coordinates (see (4.19)). Instead, the
trapping potential and the dipole axis become time-dependent. The absence of the rotating term allows us
to develop a simple and efficient time-splitting scheme.

4.2.2. A time-splitting pseudo-spectral method

Here we shall consider the new equation (4.19)-(4.20) which has been reformulated in rotating Lagrangian
coordinates. In a practical computation, we first truncate the problem into a bounded computational
domain B = [Lx̃, Rx̃] × [Lỹ, Rỹ] × [Lz̃, Rz̃] if d = 3, or B = [Lx̃, Rx̃] × [Lỹ, Rỹ] if d = 2. From t = tn to
t = tn+1 := tn + ∆t, the equation is solved in two steps. One first considers

i∂tφ(x̃, t) =
[
W(x̃, t) + β|φ|2 + λΦ̃(x̃, t)

]
φ(x̃, t), x̃ ∈ B, tn ≤ t ≤ tn+1, (4.22)

Φ̃(x̃, t) =
(
Ũ ∗ ρ̃

)
(x̃, t), x̃ ∈ B, tn ≤ t ≤ tn+1, (4.23)

for a time step ∆t, then solves

i∂tφ(x̃, t) =
1

2
(−∇2 +m2)sφ(x̃, t), x̃ ∈ B, tn ≤ t ≤ tn+1, (4.24)

with periodic boundary conditions on the boundary ∂B for the same time step. Here, ρ̃(x̃, t) = |φ(x̃, t)|2 if
x̃ ∈ B and ρ̃(x̃, t) = 0 otherwise. The linear subproblem (4.24) is discretized in space by the Fourier pseudo-
spectral method and integrated in time exactly in the phase space. The nonlinear subproblem (4.22)-(4.23)
preserves the density pointwise, i.e. |φ(x̃, t)|2 ≡ |φ(x̃, t = tn)|2 = |φn(x̃)|2, and it can be integrated exactly
as

φ(x, t) = exp
{
−i
[
(t− tn)β|φn(x̃)|2 + λϕ(x̃, t) + P (x, t)

]}
, x̃ ∈ B, tn ≤ t ≤ tn+1, (4.25)

ϕ(x̃, t) =

∫
Rd
K̃(x̃− ỹ, t)ρ(ỹ, tn)dỹ, (4.26)

where the time-dependent kernel K̃(x̃, t) has the form

K̃(x̃, t) =

∫ t

tn

Ũ(x̃, τ)dτ =


(t− tn)/(2d−1π|x̃|µ), Coloumb,

−δ(x̃)(t− tn)− 3L̃3(t)( 1
4π|x̃| ), 3D DDI,

− 3
2 L̃2(t)( 1

2π|x̃| ), 2D DDI.

(4.27)

Here, the differential operators L̃3(t) =
∫ t
tn
∂m(τ)m(τ)dτ and L̃2(t) =

∫ t
tn
∂m⊥(τ)m⊥(τ)dτ − n2

3∇2(t− tn) can

be actually integrated analytically and have some explicit expressions. One refers to section 4.1 in [16]
for more details. The GauSum solver is then applied to evaluate the nonlocal nonlinear interaction ϕ(x̃, t)
(4.26). In addition, we have

P (x̃, t) =

∫ t

tn

W(x̃, τ)dτ =

∫ t

tn

V (A(τ)x̃)dτ. (4.28)

If V (x) is chosen as the harmonic potential (1.4), then P (x̃, t) can be calculated analytically. For a general
potential, a numerical quadrature can be used to approximate the integral (4.28).
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To simplify the notations, we only present the scheme for the 2D case. Let L and M be two even positive
integers. We choose hx̃ = Rx̃−Lx̃

L and hỹ =
Rỹ−Lỹ
M as the spatial mesh sizes in the x̃- and ỹ-directions,

respectively. We define the indices and grid points sets as

TLM =
{

(`,m) ∈ N2 | 0 ≤ ` ≤ L, 0 ≤ m ≤M
}
,

T̃LM =
{

(p, q) ∈ N2 | − L/2 ≤ p ≤ L/2− 1, −M/2 ≤ q ≤M/2− 1
}
,

Gx̃ỹ = {(x̃`, ỹm) =: (Lx + ` hx, Ly +mhy), (`,m) ∈ TLM} .

We introduce the following functions

Wpq(x̃, ỹ) = eiµ
x̃
p(x̃−Lx̃) eiµ

ỹ
q (ỹ−Lỹ), (p, q) ∈ T̃LM ,

with

µx̃p =
2πp

Rx̃ − Lx̃
, µỹq =

2πq

Rỹ − Lỹ
, (p, q) ∈ T̃LM .

Let fn`m (f = φ, ϕ or P ) be the approximation of f(x̃`, ỹm, tn) for (`,m) ∈ TLM and n ≥ 0. We denote
by φn the solution at time t = tn, with components {φn`m, (`,m) ∈ TLM}. We take the initial data as
φ0
`m = φ0(x̃`, ỹm), for (`,m) ∈ TLM . A second-order time-splitting Fourier pseudo-spectral (TSFP) method

to solve (4.19)-(4.20) is given by

φ
(1)
`m =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

e−
i∆t
4 [(µx̃p)2+(µỹq )2+m2]

s

(̂φn)pq Wpq(x̃`, ỹm), (4.29)

φ
(2)
`m = φ

(1)
`m exp

{
−i
[
∆tβ|φ(1)

`m|
2 + λϕn+1

`m + Pn+1
`m

]}
, (4.30)

φn+1
`m =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

e−
i∆t
4 [(µx̃p)2+(µỹq )2+m2]

s

(̂φ(2))pq Wpq(x̃`, ỹm). (4.31)

Here, (̂φn)pq and (̂φ(2))pq are the discrete Fourier series coefficients of the vectors φn and φ(2), respectively.
This method is referred to as TS2-GauSum. The TS2-GauSum method (4.29)-(4.31) is explicit, efficient,
simple to implement, unconditionally stable and can be easily extended to high-order time-splitting schemes.

4.3. Numerical results

4.3.1. Accuracy test

In this subsection, we test the accuracy of the method TS2-GauSum (4.29)–(4.31). To this end, we
consider the 2D rotating FGPE with harmonic potential (1.4) and DDI. The parameters are chosen as
d = 2, β = 100, ω = 0.5 and γx = γy = 1. The dipole axis is chosen as n = (1, 0, 0)T , while the initial data
is chosen as

ψ0(x) =
21/4

√
π
e−

2x2+y2

2 , x ∈ R2. (4.32)

The computational domain is chosen as D = [−12, 12] × [−12, 12]. To demonstrate the results, we denote
ψnh,∆t as the numerical approximation of ψ(x, t = tn) obtained by the TS2-GauSum (4.29)–(4.31) in D
with mesh size hx = hy = h and time step ∆t. We take the reference (‘exact’) solution ψ(x, t = tn) as its
numerical approximation with very fine mesh sizes, i.e., ψnh0,∆t0

with h0 = 3
128 and ∆t = 0.0001. Moreover,

we define the following error function

eh,∆tψ (tn) :=
‖ψnh0,∆t0

− ψnh,∆t‖l2
‖ψnh0,∆t0

‖l2
, n ≥ 0, (4.33)

where ‖ · ‖l2 denote the ll
2

norm. Table 1 shows the error functions for the FGPE with λ = 0 and different
s, while table 2 shows those for the FGPE with s = 1.2 and different λ at time t = 0.4.
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Table 1: Spatial errors (upper parts) eh,∆t0ψ (t) and temporal errors (lower parts) eh0,∆t
ψ (t) at t = 0.4 for the dynamics of the

2D FGPE with λ = 0 and different fractional order s.

eh,∆t0ψ (t) h = 3/4 h/2 h/4 h/8 h/16

s = 0.6 1.46 6.93E-1 6.19E-2 4.40E-4 6.29E-8

s = 0.9 1.36 3.05E-1 1.98E-2 7.45E-6 1.55E-11

s = 1.2 8.33E-1 3.66E-2 1.19E-5 1.04E-7 5.61E-9

eh0,∆t
ψ (t) ∆t = 0.02 ∆t/2 ∆t/4 ∆t/8 ∆t/16

s = 0.6 6.58E-3 1.63E-3 4.08E-4 1.02E-4 2.53E-5

s = 0.9 4.76E-3 1.18E-3 2.93E-4 7.31E-5 1.82E-5

s = 1.2 7.85E-3 1.85E-3 4.56E-4 1.14E-4 2.83E-5

Table 2: Spatial errors (upper parts) eh,∆t0ψ (t) and temporal errors (lower parts) eh0,∆t
ψ (t) at t = 0.4 for the dynamics of the

2D FGPE with s = 1.2 and different strength of DDI λ.

eh,∆t0ψ (t) h = 3/4 h/2 h/4 h/8 h/16

λ = 1 1.10 1.00E-1 2.13E-4 3.59E-9 1.65E-10

λ = 5 1.26 1.24E-1 5.49E-4 1.03E-8 4.57E-10

λ = 10 1.38 1.54E-1 1.27E-3 2.84E-8 1.17E-9

eh0,∆t
ψ (t) ∆t = 0.02 ∆t/2 ∆t/4 ∆t/8 ∆t/16

λ = 1 6.51E-3 1.56E-3 3.88E-4 9.66E-5 2.40E-5

λ = 5 8.08E-3 1.84E-3 4.55E-4 1.13E-4 2.82E-5

λ = 10 1.33E-2 2.24E-3 5.46E-4 1.36E-4 3.38E-5

4.3.2. Dynamcis

In this subsection, we present some numerical results for the dynamics of the FNLSE/FGPE solved by
TS2-GauSum. To this end, unless stated, we let m = 0, Ω = 0, d = 2 and choose the computational domain
as B = [−16, 16]× [−16, 16]. The mesh sizes in space and time are chosen as hx = hy = 1

8 and ∆t = 10−3,
respectively. The trapping potential V (x) is chosen as (1.4) with γx = γy = 1. The nonlocal interaction is
of Coulomb-type with µ = 1. The initial data is set to

ψ0(x) = φs0g (x− x0) ei v0(0.8x+0.5y), (4.34)

where φs0g is the ground state of the FNLSE with the fractional order s0. Starting from the ground state
φs0g (x), we shift it by x0 ∈ R2 and/or imprint an initial momentum as shown above.

Example 4.1. Dynamics of the FNLSE (x0 = (0, 0)T ). In this example, let β = 0, λ = −1, v0 = 1 and
x0 = (0, 0)T in (4.34). We study two cases in (4.34): Case I: s0 = 1, Case II: s0 = s.

Figure 6 and 7 show the dynamics of mass, energy, centre of mass, condensate widths of the FNLSE with
different fractional orders s. We can observe that (i) The mass and total energy are well conserved. (ii) The
fractional order significantly affects the dynamics of the FNLSE. As we know, for the classical NLSE (s = 1),
the density profile retains its initial shape, meanwhile swings periodically in the harmonic trap (cf. Fig. 6
(a)). However, for the fractional case (s 6= 1), the density profile is quite different from the initial profile.
For the subdispersion case, s < 1, the decoherence emerges, i.e. the loss of solitary profile, and it becomes
stronger when |s − 1| is larger. For superdispersion, i.e. s > 1, there is much less decoherence observed.
The density profile would exhibit damped oscillations around what appears to be a rescaled ground state,
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which behaves similarly as the breather solutions of the classical NLSE. (iii) For both cases, the decoherence
is weak and turbulence (the high frequencies) does not emerge, letting alone the chaotic dynamics. The
turbulence and/or chaotic dynamics might emerge if the initially imprinted momentum is large enough.
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Figure 6: Time evolution of the energies, centre of mass and condensate width in example 4.1 for case I for: (a) s = 1 (standard
case), (b) s = 0.95 (subdispersion case) and (c) s = 1.5 (superdispersion case).

Example 4.2. Dynamics of the FNLSE with position shifts in initial data. With fixed s0 = 0.75
(subdispersion) and v0 = 0 in (4.34), we study the following four cases:

• Case I. Linear fractional Schrödinger equation. Let β = λ = 0, x0 = (1, 1)T .

• Case II. Linear fractional Schrödinger equation. Let β = λ = 0, x0 = (3, 3)T .

• Case III. FNLSE with purely short-range interaction. Let β = 50, λ = 0, x0 = (3, 3)T .

• Case IV. FNLSE with purely long-range interaction. Let β = 0, λ = 10, x0 = (3, 3)T .
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Figure 7: Time evolution of the energies, centre of mass and condensate width in example 4.1 for case II for: (a) s = 0.5
(subdispersion case), (b) s = 1.1 (superdispersion case).

Figure 8 shows the dynamics of the mass, energy, centre of mass, condensate widths, while Figure 9
shows the contour plot of the density |ψ(x, t)|2 at different times. Similarly to Example 4.1, we can see
that (i) For the FNLSE, the density profile no longer retains its initial shape as in the classical NLSE. The
density profile also oscillates around the center of the trap and decoherence emerges. (ii) The dynamics of
the wave function depends crucially on the initial shift x0. If the initial shift is small, the initial shape is
changed slightly, i.e. the decoherence is small (cf. Fig. 9 (a)), while for large shifts, the decoherence appears
very quickly. Turbulence and chaotic dynamics might also occur for a large x0 in the linear FSE (cf. Fig. 9
(b)). (iii) Both the short- and long-range nonlinear interactions can reduce and/or delay the emergence of
decoherence and suppress the wave function from chaotic dynamics. Turbulence emerges in the FNLSE with
pure local nonlinearity (see Fig. 9 (c)), while the decoherence is weaker in the FNLSE with pure nonlocal
nonlinearity. The density profile would actually oscillate like a breather (cf. Fig. 9 (d)). It would also be
interesting to investigate the decoherence and turbulence properties in the superdispersion case s > 1 and
analyze how they are affected through a rotation effect. This will be analyzed in future research. Our results
are in accordance with those showed in [53].

Example 4.3. Dynamics of the vortex lattice. We study the dynamics of lattice for the FGPE with
s = 1.2 and dipole dipole interaction under harmonic trapping potential. The initial data is chosen as its
the ground states with the other parameters chosen as: β = 100, γx = γy = 1 and λ = 0. The following
cases are carried out.

• Case I. Only change the trapping potential frequency to γx = γy = 1.5.

• Case II. Only change the trapping potential frequency to γx = 1.05.

• Case III. Only change the fractional order to s = 0.7.

• Case IV. Only change the fractional order to s = 1.5.
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Figure 8: Time evolution of the energies, centre of mass and condensate width in example 4.2 for cases I to IV (from top to
bottom). Here, we consider a subdispersion case for s0 = 0.75.

• Case V. Turn on the dipole interaction: λ = 80 with dipole axis n = (1, 0, 0).
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(a)

(b)

(c)

(d)

Figure 9: Contour plots of the density |ψ(x, t)|2 at different times in example 4.2 for cases I to IV (from top to bottom). Here,
we consider s0 = 0.75 (subdispersion).

5. Conclusion

In this paper, we proposed efficient and robust numerical methods for computing the ground states and
dynamics of the FNLSE equation with an angular momentum and nonlocal interaction potentials. Existence
and non-existence of the ground states were presented and dynamical laws for the mass, energy, angular
momentum and center of mass were obtained.

We then studied the ground states and dynamics of the FNLSE numerically. It was found that the
fractional order s affects both the ground states and dynamics in a significant way. The ground states
become more peaked as s < 1 tends smaller, corresponding here to subdispersion. For the superdispersion
case, i.e. s > 1, the creation of a giant vortex can be observed for a fast rotating system, which is totally
different from the behavior of the classical GPE. Critical values of the rotating frequencies to create the first
vortex solution are numerically found to depend on s. For the dynamics, decoherence as well as turbulence
were observed in the FNLSE when an initial data is prepared from a ground state with imprinted phase shift
and/or position shift. It is shown that the smaller the fractional exponent s is, the easier the decoherence
emerges. The larger the initial shift is, the easier the turbulence and chaotic dynamics arise. Furthermore,
the presence of repulsive nonlinearities, both local and nonlocal, can suppress the “peaking” effects of the
ground states and the decoherence/turbulence observed in the dynamics.

It is worthwhile to remark that the ground states of the FNLSE decay only algebraically as |x| → ∞
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Figure 10: Contour plots of the density |ψ(x, t)|2 at different times in example 4.3 for cases I to V (from top to bottom).

when the external potential V (x) is bounded [38] and β < 0. A very large computational domain is necessary
for both the ground state computation and the dynamics [54]. It would be interesting and crucial to derive
a fractional version of the free boundary conditions such as the transient BC, absorbing BC and also the
PML [3] for the FNLSE.

Finally, let us emphasize that the time and space fractional NLSE, for 0 < γ < 1,

i∂γt ψ(x, t) =

[
1

2

(
−∇2 +m2

)s
+ V (x) + β|ψ(x, t)|2 + λΦ(x, t)− ΩLz

]
ψ(x, t), (5.35)

Φ(x, t) = U ∗ |ψ(x, t)|2, x ∈ Rd, t > 0, d ≥ 2. (5.36)

is also very interesting for some applications [33, 41, 55, 56, 65, 77]. The next step of our work would
consist in analyzing efficient and accurate numerical methods for solving FNLSEs both in space and time
and understand their behavior and properties.
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Appendix A. Proof of lemma 4.1

Let us introduce k =
(
kx, ky, kz

)T
if d = 3, and k =

(
kx, ky

)T
if d = 2. Let Jz = y∂x − x∂y and

Ĵz = ky∂kx − kx∂ky . Then, we have Ĵzψ = Ĵz ψ̂. Differentiating (4.2), noticing (1.1) and using the
Plancherel’s formula, we have

d

dt
〈Lz〉(t) = 〈Lzψt, ψ〉+ 〈Lzψ,ψt〉 = −〈iψt, Jzψ〉 − 〈Jzψ, iψt〉

=
1

(2π)d

{
−〈 1

2

(
|k|2 +m2

)s
ψ̂ + V̂ψ, Ĵzψ̂ 〉 − 〈 Ĵzψ̂,

1

2

(
|k|2 +m2

)s
ψ̂ + V̂ψ 〉

}
, (A.1)

with Vψ := V ψ + λΦψ. The rotation and local nonlinear terms cancel. We omit both for brevity.
By integrating the above equation by parts, we have

d

dt
〈Lz〉(t) =

1

(2π)d

{
−〈 1

2

(
|k|2 +m2

)s
ψ̂ + V̂ψ, Ĵzψ̂ 〉+ 〈 ψ̂, Ĵz

(
1

2

(
|k|2 +m2

)s
ψ̂ + V̂ψ

)
〉
}

=
1

(2π)d

{
〈 ψ̂, Ĵz(V̂ψ) 〉 − 〈 V̂ψ, Ĵzψ̂ 〉

}
=

1

(2π)d

{
−〈 Ĵzψ̂, V̂ψ 〉 − 〈 V̂ψ, Ĵzψ̂ 〉

}
= −〈 Jzψ,Vψ 〉 − 〈 Vψ, Jzψ 〉 = 〈 |ψ|2, JzV 〉 =

∫
Rd
|ψ|2(y∂x − x∂y)

(
V (x) + λΦ(x, t)

)
dx. (A.2)

Therefore, by adapting the polar/cylindrical coordinates transformation in 2D/3D and noticing y∂x−x∂y =
−∂θ, one can obtain

I1 =:

∫
Rd
|ψ|2(y∂x − x∂y)V (x)dx = 0, (A.3)

provide that V (x) is radially/cylindrically symmetric in 2D/3D. Now that

I2 =:

∫
Rd
|ψ|2(y∂x − x∂y)Φ(x, t)dx =

1

(2π)d
〈|̂ψ|2, ĴzΦ̂〉 =

∫
Rd
Û(k)|̂ψ|2(ky∂kx − kx∂ky )|̂ψ|2dk, (A.4)

applying the polar/cylindrical coordinates transformation in 2D/3D in the Fourier space, it is easily to get

I2 = 0 if Û(k) in (1.5) is chosen as the Coulomb-type interaction or DDI with n = (0, 0, 1)T .
�

Appendix B. Proof of lemma 4.2

Step 1: By differentiating (4.5) and noticing (1.1), we have

ẋc(t) =
d

dt
〈xψ,ψ〉 =

1

i
〈x iψt, ψ〉+ i〈xψ, iψt〉 = i [〈xψ, iψt〉 − 〈x iψt, ψ〉]

=
i

2

[
〈xψ, (−∆ +m2)sψ〉 − 〈x (−∆ +m2)sψ,ψ〉

]
− Ω [〈xJzψ,ψ〉+ 〈ψ,xJzψ〉] . (B.1)

An integration by parts and an application of Plancherel’s formula lead to

ẋc(t) =
i

2

1

(2π)d

{
〈i∇kψ̂, (|k|2 +m2)sψ̂〉 − 〈i∇k[(|k|2 +m2)sψ̂(k)], ψ̂〉

}
+ Ω〈ψJzx, ψ〉

=
s

(2π)d
〈(|k|2 +m2)s−1kψ̂, ψ̂〉+ ΩJxc. (B.2)
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Note that (B.2) is well-defined for ∀ s > 0. If s = 1, (B.2) yields

ẋc(t)− ΩJxc =
1

(2π)d
〈k ψ̂, ψ̂〉 = i〈ψ,∇ψ〉 = i〈G ∗ ψ,∇ψ〉, (B.3)

with G(x) = δ(x). If 0 < s < 1, we have(
|k|2 +m2

)s−1

=
1

cs

∫ ∞
0

λ−se−π(|k|2+m2)λdλ, with cs = Γ
(
1− s

)
/π1−s. (B.4)

Hence, one gets

sF−1
((
|k|2 +m2

)s−1
ψ̂
)

= s
1

(2π)d

∫
Rd

(
|k|2 +m2

)s−1

ψ̂ eik·xdk

=
s

cs

∫ ∞
0

λ−s e−πλm
2

[
1

(2π)d

∫
Rd
ψ̂ e−πλ|k|

2

eik·x dk

]
dλ =

s

cs

∫ ∞
0

λ−s e−πλm
2
[
ψ ∗ F−1

(
e−πλ|k|

2
)]
dλ

=
s

cs(2π)d

∫ ∞
0

λ−s e−πλm
2

∫
Rd
λ−

d
2 e−

|x−y|2
4πλ ψ(y)dydλ

=
s

cs(2π)d

∫
Rd
ψ(y)

[∫ ∞
0

λ−
2s+d

2 e−πλm
2

e−
|x−y|2

4πλ dλ

]
dy =:

(
G ∗ ψ

)
(x), (B.5)

with

G(x) =
s

cs(2π)d

∫ ∞
0

λ−
2s+d

2 e−πλm
2

e−
|x|2
4πλ dλ =

2s−d/2s

Γ
(
1− s

)
πd/2

(
m

|x|

) d
2 +s−1

K d
2 +s−1

(
m|x|

)
, (B.6)

where Kv(z) is the modified Bessel function of the second-kind and order v defined by (4.10). Finally, we
obtain

ẋc(t)− ΩJxc =
s

(2π)d
〈(|k|2 +m2)s−1kψ̂, ψ̂ 〉 =

〈
sF−1

(
|k|2 +m2)s−1ψ̂

)
,F−1

(
kψ̂
)〉

= i
〈
(G ∗ ψ),∇ψ

〉
. (B.7)

Step 2: Let us consider the second-order derivative of (B.2). By (B.5), we have

ẍc(t)− ΩJ ẋc = 2sRe
(
Cd〈k(|k|2 +m2)s−1ψ̂t, ψ̂ 〉

)
= 2s Im

(
Cd〈 iψ̂t,k(|k|2 +m2)s−1ψ̂ 〉

)
= 2 Im

(
Cd〈sF−1

(
(|k|2 +m2)s−1V̂ψ

)
, F−1

(
kψ̂
)
〉
)

+ sΩ
[
Cd〈 ψ̂,k(|k|2 +m2)s−1Ĵzψ̂ 〉

+Cd〈 ψ̂, ψ̂ Ĵz
(
k(|k|2 +m2)s−1

)
〉 − Cd〈k(|k|2 +m2)s−1ψ̂, Ĵzψ̂ 〉

]
= 2 Re

(〈
G ∗ (Vψ),∇ψ

〉)
+ sΩCd〈 (|k|2 +m2)s−1ψ̂, ψ̂ Ĵzk 〉

= 2 Re
(〈
G ∗ (Vψ),∇ψ

〉)
+ ΩJ

(
ẋc − ΩJxc

)
.

Hence, we obtain

ẍc(t)− 2ΩJ ẋc + Ω2J2xc = 2 Re
(〈
G ∗ (Vψ),∇ψ〉

)
, (B.8)

ending hence the proof. �
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