
SOLVING HIGHLY-OSCILLATORY NLS WITH SAM:
NUMERICAL EFFICIENCY AND LONG-TIME BEHAVIOR ∗

PHILIPPE CHARTIER† , NORBERT J. MAUSER ‡ , FLORIAN MÉHATS § , AND YONG
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Abstract. In this paper, we present the Stroboscopic Averaging Method (SAM), recently
introduced in [7, 8, 10, 13], which aims at numerically solving highly-oscillatory differential equations.
More specifically, we first apply SAM to the Schrödinger equation on the 1-dimensional torus and
on the real line with harmonic potential, with the aim of assessing its efficiency: as compared to
the well-established standard splitting schemes, the stiffer the problem is, the larger the speed-up
grows (up to a factor 100 in our tests). The geometric properties of SAM are also explored: on
very long time intervals, symmetric implementations of the method show a very good preservation of
the mass invariant and of the energy. In a second series of experiments on 2-dimensional equations,
we demonstrate the ability of SAM to capture qualitatively the long-time evolution of the solution
(without spurring high oscillations).

Key words. highly-oscillatory evolution equation, stroboscopic averaging, Hamiltonian PDEs,
invariants, nonlinear Schrödinger

AMS subject classifications. 34K33, 37L05, 35Q55

1. Introduction. This paper is devoted to the numerical solution of highly-
oscillatory evolution equations posed in a Banach space

u̇ε(t) = εf (t, uε(t)) , t ∈ [0, T/ε], uε(0) = u0 ∈ X, (1.1)

where f is a smooth map, periodic with respect to t, and where T is a fixed positive
time independent of ε. Our goal is to assess the numerical performances of the so-
called Stroboscopic Averaging Method (SAM) for highly oscillatory partial differential
equations. The highly-oscillatory character of the equation stems from the length of
the interval over which it is considered: this aspect is maybe better grasped whenever
the problem is written in terms of the alternative rescaled variable vε(τ) = uε(t) with
τ = εt

d

dτ
vε(τ) =

1

ε

d

dt
uε(t) = f(τ/ε, vε(τ)), τ ∈ [0, T ], vε(0) = u0,

a format for which ε clearly appears as the inverse of a frequency going to ∞ for ε
going to 0. Note that the SAM is designed for problems with a single frequency.

In the two equivalent forms considered above, oscillations are extrinsic, i.e. explic-
itly present in the vector field f , as this is frequently the case in equations arising in
practice and originating from physics or chemistry. Oscillations might also be intrin-
sic: in the application considered here, namely the Schrödinger equation, the problem
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in its original form is autonomous and no periodic variable is apparent. Nevertheless,
it may be reformulated as in (1.1). Generally speaking, equations of the form

v̇ε(t) = a(vε(t)) + εb(vε(t)) (1.2)

where the flow map χt of v̇ = a(v) is periodic, can easily be rewritten, through the
change of variable vε(t) = χt(u

ε(t)), in the form (1.1) with

f(t, uε) =
(∂χt

∂u
(uε)

)−1

b(χt(u
ε))

and this transformation is extremely simple when a is a linear map.

Problem (1.1) is notoriously difficult to solve since numerical methods, in order
to achieve some accuracy, are forced to follow more and more oscillations (refer to
(1.1)) as ε becomes smaller and smaller, whereas the long-term dynamics is often
what only matters in applications. Various numerical methods have been proposed in
the literature for solving such problems. Standard methods such as Strang splitting
or compositions thereof, which aim at solving (1.2) directly, suffer from severe step
size restrictions as ε goes to zero. More elaborated methods for (1.2) when a is linear,
introduce filter functions in various ways (they are usually referred to as Gautschi-type
methods) and bypass some of limitations of splitting techniques, although not in a
completely satisfactory way as resonances are still present and/or geometric properties
not preserved (see [19], Chapter XII for a survey). The technique we present and
use here proceeds in a completely different way. It relies upon the existence of an
asymptotic high-order (in ε) averaged equation associated with (1.1) and aims at
approximating numerically the solution thereof through a micro-macro strategy. The
underlying averaged equation

uε(t) = εF ε(uε) := εF1(u
ε) + ε2F2(u

ε) + . . . , uε(0) = u0, (1.3)

being autonomous and in particular smooth w.r.t. ε, it can be solved with a macro-
integrator which benefits from the smallness of ε, hence with a computational cost
which is essentially independent of ε (the effect of the time-interval T/ε becoming
larger with ε → 0 is indeed counterbalanced by the possibility to use also larger
macro-steps H = O(1/ε)). Evidently, F ε needs to be computed in some way or an-
other. Analytical expressions, though available, are becoming increasingly complex
for high orders and are not easily amenable to practical computations. The strategy
we use consists in solving the original equation (1.1) with a micro-integrator over
several periods and then combining the resulting values to approximate F ε through
finite difference formulas. Here, the stroboscopic character of SAM is crucial, as it
allows to assert that the solutions of (1.1) and (1.3) coincide for values of t that are
multiple of the period. Altogether, SAM is a micro-macro procedure using only the
original vector field f and providing approximations of the exact solution of (1.3).
We emphasize here again that its computational cost, in sharp contrast with stan-
dard integrators, is independent of ε. A detailed description of stroboscopic averaging
at both theoretical and practical levels shall be given in sections 2 and 3.

Another fundamental property of SAM is its geometric character. As a matter of
fact, it has been shown, first for ODEs [13] and later on for evolution equations in a
Hilbert space [10], that the averaged vector field F ε in (1.3) inherits the properties of
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f . In particular, at a formal level, F ε is Hamiltonian whenever f is, and (1.3) has the
same first integrals as f . For the case considered here, the quantities of interest are
the Hamiltonian of the Schrödinger equation and the mass (L2-norm) of the solution.
These two quantities are still invariants of the associated averaged equation and it
is of importance to design a version of SAM which also preserves these invariants
numerically. This aspect will be further discussed in Section 3.

In this work, we apply SAM algorithm1 to the nonlinear Schrödinger equation

i∂tψ
ε(t, x) = (Aψε)(t, x) + εα(x)|ψε(t, x)|2ψε(t, x), t ≥ 0, ψ(0, x) = ψ0(x),

either on the torus T2π = [0, 2π] with A = −∂2x and periodic boundary conditions, or
on R (Gross-Pitaevskii) with A = − 1

2∂
2
x + 1

2 (x
2 − 1). In both cases, the operator A

has its spectrum included in Z so that e−itA is 2π-periodic in time. The equation can
thus be regarded as an evolution equation of the form (1.2) in a functional Hilbert
space X = Hs. The first case is considered as a test equation to assess the efficiency
of the method (see Subsection 4.1): we demonstrate experimentally that the method
can be as much as 100 times faster than Strang splitting when ε is small. We then
show in Subsection 4.2, that whenever the macro-integrator is chosen appropriately,
i.e. according to the discussion of Subsection 3.2, SAM provides a numerical solution
with constant mass along which the Hamiltonian is preserved up to a small error
(which does not drift in time). The Gross-Pitaevskii equation in one dimension is
used similarly to confirm the error analysis of Subsection 3.

Finally, the objective of Section 5 is to illustrate how SAM can be used to explore
the qualitative behavior of highly-oscillatory systems, in particular here the dynamics
of the modes of the solution. The nonlinearity in Schrödinger equations indeed induces
coupling effects and energy transfers. To this aim, we shall consider three NLS models:
Gross-Pitaevskii equation in one dimension and two models in two dimensions in the
context of anisotropic confinement.

2. Presentation of the stroboscopic averaging method. The so-called Stro-
boscopic Averaging Method (SAM in brief) was introduced in [7, 8, 13] for the purpose
of solving highly-oscillatory ordinary differential equations. Its foundations rely on
the asymptotic technique of stroboscopic averaging, whose aim is to write the exact
solution of a differential system as the composition of a periodic (rapidly oscillating in
time) change of variables with the flow of an autonomous (non-stiff) differential equa-
tion2. While various choices are possible for this change of variable, it is constructed
in the framework of stroboscopic averaging so as to coincide with the identity map at
times that are multiple of the period, a property which will be crucial in the design of
SAM. The relevance of this decomposition in the case of infinite dimensional Banach
spaces was further analyzed in [10] and for application to the Schrödinger equation, we
now present it in this context. It should be stressed that the theoretical background
of this section is not required in the effective implementation of SAM.

1Corresponding Fortran codes are available at http://www.irisa.fr/ipso/perso/chartier/software.html
2The technique involves series that are generically not convergent, unless the problem is linear: in

this particular case, it leads to a different though equivalent formulation of the well-known Floquet’s
theorem. In general, the sought decomposition can be obtained only up to a small remainder term.
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2.1. Stroboscopic change of variable and associated averaged vector
field. Given a differential equation, posed in a Banach space X , of the form

u̇ε(t) = εf (t, uε(t)) , uε(0) = u0 ∈ X, (2.1)

where f is a smooth map from T × X into X (with T ≡ R/(PZ)) and where it
it assumed that uε(t) exists on [0, T/ε] for some positive T , it can be shown that
there exist a smooth change of variables Φε : T ×X 7→ X and a smooth vector field
F ε : X 7→ X , such that

vε(t) = Φε (t,Ψε (t, u0)) (2.2)

is an accurate approximation of the solution uε(t) of (1.1) in the sense that

∀ t ∈ [0, T/ε], ‖uε(t)− vε(t)‖X ≤ Ce−C/ε (2.3)

where C is a positive constant independent of ε. Here, Ψε(t, u0) denotes the t-flow of
the differential equation

Ψ̇ε(t, u0) = εF ε(Ψε(t, u0)), Ψε(0, u0) = u0. (2.4)

For such a result to hold, several assumptions are required, among which the most
stringent one is the analyticity of f with respect to its second argument u ∈ X . In
contrast, only the continuity of f w.r.t. its first argument is imposed. The next
theorem (we refer to [13] for a proof in the finite dimensional case and to [10] in
the context of Banach spaces) sums up the above discussion in precise mathematical
terms:

Theorem 2.1. Assume that (i) f is continuous w.r.t. its first variable, (ii) f
is analytic w.r.t. to its second variable, (iii) there exist ε0 > 0 and a bounded open
subset K of X such that uε(t) exists and remains in K for all 0 < ε < ε0 and all
t ∈ [0, T/ε] and (iv) f is bounded on T×K.

Then there exist Φε (continuous and P -periodic w.r.t. its first variable, analytic
w.r.t. to its second variable) and F ε (analytic), and constants 0 < ε1 < ε0 and C > 0,
such that

∀ 0 < ε < ε1, ∀ t ∈ [0, T/ε], ‖uε(t)− Φε(t,Ψε(t, u0))‖X ≤ C exp

(
−C
ε

)
, (2.5)

where Ψε is the flow of the differential equation

Ψ̇ε(t, u0) = εF ε (Ψε(t, u0)) .

Furthermore, if assumption (iii) is valid with T = +∞, then estimate (2.5) holds
on [0, T̂ /ε1+α], for any T̂ > 0 and any 0 < α < 1, with constants ε1 and C now
depending on α and T̂ .

Remark 2.1. It should be noticed that the dynamics of the weakly nonlinear
equation (1.1) becomes non-trivial on intervals of length greater than T/ε for which
the variation of uε(t) is expected to be of size O(1). Estimate (2.5) itself is thus highly
non-trivial on intervals of length T̂ /ε1+α.

Remark 2.2. Whenever the function f is not analytic but only of class Ck w.r.t.
its second variable, a weaker result still holds with an error estimate of the form

∀t ∈ [0, T/ε], ‖uε(t)− Φε(t,Ψε(t, u0))‖X ≤ Cεk, (2.6)
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where Φε and F ε are now only k-times differentiable.
Remark 2.3. The so-called averaged vector field F ε has an expansion in powers

of ε of the form F ε(u) = F1(u) + εF2(u) + . . ., whose terms are built up from f and
its derivatives: for instance, the first two terms read

F1(u) =
1

P

∫ P

0

f(τ, u)dτ and F2(u) = − 1

2P

∫ P

0

∫ τ

0

[f(s, u), f(τ, u)]dsdτ,

where [f, g] = (∂uf)g − (∂ug)f denotes the usual Lie-bracket of smooth functions.
The next terms in the expansion can also be explicitly written down using either the
methodology used in [10] or a formal nonlinear Floquet-Magnus expansion exposed in
[6]. Nevertheless, they require the resolution of complicated recurrence formulas.

2.2. Geometric aspects of stroboscopic averaging. Assume now that X
is a Hilbert space (with scalar product (·, ·)X) and that it is densely continuously
embedded in some ambient Hilbert space Z (with real scalar product (·, ·)Z). The
vector field f is said to be Hamiltonian if there exists a bounded map J ∈ GL(X),
skew-symmetric w.r.t. (·, ·)Z , and an analytic function H : T × X 7→ C such that
f(t, u) = J−1∇uH(t, u) where the gradient is taken w.r.t. (·, ·)Z , i.e.

∀(t, u, v), (∇uH(t, u), v)Z = ∂uH(t, u) v.

Accordingly, we say that Φε(t, u) is symplectic if

∀(t, u, v, w), (J∂uΦ
ε(t, u)v , ∂uΦ

ε(t, u)w)Z = (Jv, w)Z .

Finally, a smooth function Iε : T×X → R (possibly depending on ε) is said to be an
invariant of (1.1) if it satisfies

∀(t, u), ∂tI
ε(t, u) + ε ∂uI

ε(t, u)f(t, u) = 0, (2.7)

which implies that

∀t, Iε(t, uε(t)) ≡ Iε(0, u0).

A number of important properties of stroboscopic averaging stem from the fact that
both the change of variable Φε and the averaged vector field F ε inherit the intrinsic
properties of the system. In particular (see [10, 13]):

• If the original equation (1.1) is Hamiltonian, then Φε is symplectic and F ε is
Hamiltonian.

• If (1.1) is divergence-free, then Φε is volume-preserving and F ε is divergence-
free.

• If Iε : T×X 7→ C is an invariant of (1.1) , then Iε(0, ·) : X 7→ C is preserved
by Φε and is an invariant of F ε.

The second point is important in applications to kinetic equations for instance, al-
though not relevant to our application to Schrödinger equation, for which it appears
as a mere consequence of its Hamiltonian character. Hence, it will not be discussed
further here.

In order to later analyze the numerical experiments on a scientifically sound
ground, we quote the following results from [10], also proved in [13] in the finite-
dimensional context:
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Theorem 2.2. [Stroboscopic averaging preserves the Hamiltonian struc-
ture] Under the assumptions of Theorem 2.1, suppose that f is Hamiltonian with
Hamiltonian H. Then Φε and F ε are respectively symplectic and Hamiltonian up
to exponentially small perturbation terms, namely there exists an analytic function
Hε : X 7→ C such that for all (t, u, v, w) ∈ T×K ×X2:

∀ 0 < ε < ε1,
∣∣∣ (J∂uΦε(t, u)v , ∂uΦ

ε(t, u)w)Z − (Jv , w)Z

∣∣∣ ≤ Ce−C/ε‖v‖X ‖w‖X , (2.8)

‖F ε(u)− J−1∇uH
ε(u)‖X ≤ Ce−C/ε. (2.9)

Remark 2.4. The Hamiltonian Hε of the averaged equation, similarly to F ε,
also has an expansion in ε of the form Hε(u) = H1(u) + εH2(u) + . . .. Its terms are
built up from H and its derivatives: for instance, the first two terms read

H1(u) =
1

P

∫ P

0

H(τ, u)dτ, H2(u) = − 1

2P

∫ P

0

∫ τ

0

{H(s, u), H(τ, u)}dsdτ

where {·, ·} denotes the Poisson-bracket {H,G} = (∇H, J∇G)Z of smooth functions.
Theorem 2.3. [Stroboscopic averaging preserves invariants] Under the

assumptions of Theorem 2.1, suppose that the function Iε : T×X 7→ R is an invariant
of the field f , i.e. satisfies (2.7) for any (t, u) ∈ T×K and is analytic w.r.t. its second
variable. Then, Φε and F ε satisfy for 0 < ε < ε1 and (t, u) ∈ T×K

‖Iε(t,Φε(t, u))−Iε(0, u)‖X ≤ Ce−C/ε and ‖ε∂uIε(0, u) F ε(u)‖X ≤ Ce−C/ε (2.10)

for some positive constant C. In particular, we have

∀ 0 < ε < ε1, ∀ t ∈ [0, T/ε], ‖Iε(t,Ψε(t, u0))− Iε(0, u0)‖ ≤ Ce−C/ε. (2.11)

Remark 2.5. By using an iterative argument (see for instance Theorem 8.1 in
[19]), it is easy to deduce from (2.11) that the Hamiltonian H is preserved along the
averaged solution over exponentially long times:

∀t ≤ CeC/2ε, ‖H(Ψε(t, u0)) −H(u0)‖ ≤ Cεe−C/2ε.

This statement will be illustrated in numerical experiments in Section 4.2.
Remark 2.6. Both previous theorems still hold whenever the functions considered

(i.e. f and Iε) are only of class Ck. In this case, the e−C/ε-term has to replaced by
εk+1.

An important particular case arising in practice concerns the following au-
tonomous semi-linear differential equation (a class to which Schrödinger equation
belongs)

ẇε(t) = J−1Awε(t) + εg(wε(t)), wε(0) = w0, (2.12)

where A is a linear (possibly unbounded) self-adjoint operator such that etJ
−1A ∈

L(X,X) is P-periodic w.r.t. t. It is then straightforward to recast this system in the
format of (1.1) by performing the preliminary change of variable (which is distinct

from Φε) uε(t) = e−tJ−1Awε(t), leading to

u̇ε(t) = ε e−tJ−1Ag
(
etJ

−1Auε(t)
)
, uε(0) = wε(0). (2.13)
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If additionally, if g is derived from a potential V , i.e. if g(w) = J−1∇V (w), then
equation (2.12) is Hamitonian with Hamiltonian

H̃(w) =
1

2
(Aw,w)Z + εV (w),

and so is equation (1.1) with f(t, u) = e−tJ−1Ag
(
etJ

−1Au
)
andH(t, u) = V (etJ

−1Au).

2.3. SAM, a numerical counterpart of stroboscopic averaging. The dif-
ferential equation (2.4) being non stiff, it makes good sense to try to approximate
it rather than to solve the original stiff problem (1.1). However, a general-purpose
numerical method can not rely on the analytical computation of such terms as those
involved in F ε and this rules out the direct resolution of equation (2.4). In the se-
quel, we rather solve it by approximating F ε “on the fly”, which is the idea at the
core of SAM and very much in the spirit of Heterogeneous Multiscale Methods (see
[14, 15, 17, 16]). In order to obtain an approximation of F ε(u) at a given point u ∈ X ,
we first use the group property of Ψε to assert that

εF ε(u) =
d

dt
Ψε(t, u)

∣∣∣∣
t=0

and then approximate F ε through an interpolation of the derivative of Ψε(t, u), at
order 2 by

F ε(u) ≈ 1

2Pε
(Ψε(P, u)− Ψε(−P, u)) = F1(u) + εF2(u) +O(ε2) (2.14)

or at order 4 by

F ε(u) ≈ 1

12Pε
(−Ψε(2P, u) + 8Ψε(P, u)− 8Ψε(−P, u) + Ψε(−2P, u)) (2.15)

= F1(u) + εF2(u) + ε2F2(u) + ε3F3(u) +O(ε4).

To complete the procedure, it remains to use the fact that

Φε(P,Ψε(P, u)) = Ψε(P, u) and Φε(−P,Ψε(−P, u)) = Ψε(−P, u),

a consequence of the stroboscopic property

∀ k ∈ Z, Φε(kP, ·) = Id.

It is worth insisting at this stage that the computation of F ε at point u is regarded as
asynchronous in the terminology of Heterogeneous Multiscale Methods. This means
here that F ε(u) necessitates the computation of Ψε(P, u) and Ψε(−P, u) irrespectively
of the time t at which we compute the approximation of vε(t). We finally obtain
a numerical method by approximating Φε(P,Ψε(P, u)) and Φε(−P,Ψε(−P, u)) by
solving the equations

U̇ε = εf(t, Uε), t ∈ [0, P ], Uε(0) = u, (2.16)

U̇ε = εf(t, Uε), t ∈ [−P, 0], Uε(0) = u, (2.17)

by a standard one-step method Sε
h (hereafter referred to as the micro-integrator)

where the step size h used is small enough to resolve one oscillation, i.e. h = P/n
with n ∈ N. The outcome of this procedure is the following micro-macro algorithm:
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SAM Algorithm
1. Choose a micro-step h = P/n and a macro-step H > 0 and set N = 0.
2. Advance the solution through a standard explicit Runge-Kutta method (here-

after referred to as the macro-integrator) with coefficients (aij , bj):

ui = uN + εH

i−1∑

j=1

aijF
ε
h(u

j), i = 1 . . . s, uN+1 = uN + εH

s∑

j=1

bj u
j , (2.18)

where, either

F ε
h(u

j) =
1

2Pε

(
(Sε

h)
n(uj)− (Sε

−h)
n(uj)

)
(2.19)

for second order interpolation, or

F ε
h(u

j)=
1

12Pε

(
−(Sε

h)
2n(uj) + 8(Sε

h)
n(uj)− 8(Sε

−h)
n(uj) + (Sε

−h)
2n(uj)

)

(2.20)

for fourth order interpolation.
3. Set N := N + 1 and go to step 2. until NH ≥ T/ε.

Note that the algorithm computes a sequence of approximations uN at times
tN = NH to the averaged solution of (2.4). For values of tN that coincide with
integers multiple of the period P , this actually provides an approximation of uε(tN ),
since uε(tN ) and Ψε(tN , u0) then coincide. If one needs the solution at intermediate
points, then it is also possible to obtain it through a kind of post-processing. If
kP < tN < (k + 1)P for some k ∈ N, an approximation of uε(tN ) is not directly
available, since Φε(tN , ·) 6= Id. Nevertheless, it is straightforward to approximate
Φε(tN , uN), since one has the relation:

uε(tN ) = Φε(tN ,Ψ
ε(tN , u0)) = Φε(∆t,Ψε(∆t,Ψε(−∆t,Ψε(tN , u0))))

≈ Φε(∆t,Ψε(∆t,Ψε(−∆t, uN))) (2.21)

where we have used with ∆t = tN − kP that, on the one hand

Φε(tN , ·) = Φε(tN − kP, ·) = Φε(∆t, ·)

owing to the periodicity of Ψε w.r.t. t and, on the other hand

Ψε(tN , ·) = Ψε(∆t,Ψε(−∆t,Ψε(tN , ·)))

owing to the group property of Ψε. Computing an approximation of uε(tN ) thus boils
down to, first approximating ũεkP ≈ Ψε(−∆t, uN) by numerically solving equation
(2.4) backward in time from 0 to −∆t and, second approximating Φε(∆t,Ψε(∆t, ũεkP ))
by numerically solving equation (1.1) from 0 to ∆t with initial value u0 replaced by
ũεkP . These are only local-in-time operations which can be done independently of the
main SAM algorithm and whose contribution to the global error of approximation is
not significant. In the following, we will not elaborate on this aspect of the method,
since only stroboscopic times will be used in numerical simulations.
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3. Numerical properties of SAM.

3.1. Formal error analysis. In this section, we present an error analysis of
SAM. We shall content ourselves with a descriptive analysis, since a more mathemat-
ically rigorous derivation of error estimates would unnecessarily burden the presen-
tation, while bringing no surprise: standard arguments for non-stiff equations indeed
hold, given that SAM requires to numerically solve the averaged equation (which is
by construction non-stiff) and the original highly-oscillatory equation with step size h
much smaller than a period (thus getting the equation back into a non-stiff regime).
As explained in [8], there are three sources of errors:

1. The approximation of εF ε by a finite-difference formula (2.14) or (2.15): the
corresponding error is expressed in terms of ε.

2. The substitution of Ψε(±ℓP, u), ℓ = 1, 2 in F ε by (Sε
±h)

ℓ·n(u) in F ε
h (2.19) or

(2.20): the corresponding error is expressed in terms of the micro-step h and
ε.

3. The discretization error due to the macro-integrator (2.18): the corresponding
error is expressed in terms of the macro-step H .

The first source of error contributes to O(εδ+1) where δ is the order of the difference
formula (either 2 or 4 in our experiments). The second source of error contributes
to O(ενhp) since one solves a non-stiff equation with vector field εf and step size h
over a bounded interval3. The extra-factor εν for ν = 1 accounts for the fact that
the micro-integrator is exact for ε = 0. It will turn out that ν = 2 is the effective
value observed4. These errors are magnified by a factor 1/ε through the stable
macro-integration over an interval of length T/ε and lead to an error in uN of size
O(εδ + εν−1hp). The third source of error accounts for an error term of the form
O((εH)q) where q is the order of the macro-integrator. We recall that εH has the
form T/N .

Combined together, these three sources of error lead to an error of size

O(εδ + εν−1hp + (εH)q). (3.1)

Remark 3.1. In the specific case of equation (2.12), it is worth mentioning that
the computation of Ψε(kP, u) for k = ±1,±2 for instance, can be done directly by
solving the original equation (2.12) (instead of the filtered equation (2.13)) on 1 or
2 periods, forward or backward in time. As a matter of fact, the filtering operation
uε(t) = e−tJ−1Awε(t) is transparent at times that are multiple of the period.

3.2. Geometric behavior. Although the asymptotic averaged field (2.4) inher-
its geometric properties of the original system (1.1), there is no guarantee that its nu-
merical implementation will also do so. When applied to a Hamiltonian equation such
as the Schrödinger equation, the averaged vector field is also Hamiltonian and it may
seem desirable for the numerical counterpart to be so. Unfortunately, even if (Sh)

n is
a symplectic map, the finite-difference approximation is not a geometric transforma-
tion and our implementation of SAM is not symplectic. However, time-reversibility
of the system (1.1), –whenever it holds–, is preserved provided the micro-integrator
is itself a symmetric method (this will be the case of the splitting methods used in
our experiments). Since in addition, F ε

h is computed through symmetric formulas,

3The integer p is here the order of the micro-integrator.
4The explanation of this behavior is rather nontrivial and somehow orthogonal to SAM. We refer

to [11] for a detailed study of this exponent 2.
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then it is also the vector field of a time-reversible equation. This property ensures a
favorable numerical behavior, as documented for ordinary-differential equations (see
for instance [19]): properties such as the preservation of the Hamitonian or the per-
sistence of KAM-tori are indeed transferred through a symmetric discretization. It is
thus in principle not difficult to design a symmetric SAM by choosing a symmetric
macro-integrator.

In the sequel, we use two kinds of macro-integrators. For simulations on time
intervals of order 1/ε, our aim is to keep SAM as efficient as possible for small values
of the parameter ε (i.e. for very high-oscillatory) for which SAM is expected to
outperform existing methods, so we use non symmetric but accurate macro-integrators
such as fourth-order Runge-Kutta method (RK4). On such intervals of time, the
non stiff character of equation (2.4) is enough for the numerical solution to exhibit
essentially no drift in the energy and mass. On longer times though (such as 1/εβ

with β ≥ 2), we use a (second-order) symmetric method for the macro-integration,
which exhibits much better preservation of geometric invariants.

4. Numerical assessment tests. The goal of this section is to confirm by nu-
merical tests the error analysis sketched in Subsection 3.1 and to observe in addition
the geometric properties of SAM for long-time integration. We apply SAM to non-
linear Schrödinger equations when the linear evolution induced by the Laplacian is
periodic in time, see [10]. We also compare the efficiency of SAM to the one of the
time-splitting method.

We consider cubic nonlinear Schrödinger equations of the form

i∂tψ
ε(t, x) = (Aψε)(t, x) + ε α(x)|ψε(t, x)|2ψε(t, x), t ≥ 0, x ∈ Ω, (4.1)

ψ(0, x) = ψ0(x),

in the two following situations:
(i) (NLS on the torus) Ω = T2π = [0, 2π], A = −∂2x with periodic boundary condi-

tions and α(x) = 2 cos(2x); this problem was studied in [18]. We will take initial
data which belong to the domain of A:

X = D(A) =
{
u ∈ H2(T2π) : u(2π) = u(0)

}
.

(ii) (Gross-Pitaevskii) Ω = R, A = − 1
2∂

2
x + 1

2 (x
2 − 1) and α(x) ≡ 1. Here also, we

will choose initial data in the domain of A:

X = D(A) =
{
u ∈ H2(R) : x2 u ∈ L2(R)

}
.

In both cases, the pivot space introduced in Subsection 2.2 is Z = L2(Ω). Moreover,
the operator A has compact resolvent and its spectrum is Z (NLS on the torus) or N
(Gross-Pitaevskii). Hence, (4.1) is under the form of the autonomous equation (2.12)
and the operator e−itA ∈ L(X,X) is 2π-periodic in time.

4.1. NLS on the torus: accuracy and efficiency of SAM. We present here
our numerical results in the case (i):

i∂tψ
ε = −∂xxψε + 2ε cos(2x)|ψε|2ψε, 0 ≤ t ≤ T0/ε, x ∈ T2π, (4.2)

ψε(0, x) = ψ0(x) = cos(x) + sin(x), x ∈ T2π . (4.3)

As micro-integrator, we adopt a time-splitting spectral method, which has been widely
and successfully used in many applications [1, 2]. More precisely, we choose the
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fourth-order time-splitting Fourier spectral method (TSFP4) introduced in [25]. This
method is based on the combination of Fourier discretization in space and reversible
time-splitting5. In practice, the wavefunction is discretized in space by Fourier series

as ψ(x) =
∑Nx/2

−Nx/2+1 ψ̂ke
ikx, with Nx = 256, such that errors originating from space

discretization can be considered as negligible. The time-step for the micro-integrator
is denoted by h and is always taken under the form 2π/N , where N ∈ N∗. This
ensures super-convergence, i.e. (3.1) holds with the exponent ν = 2 in , as proven in
[11].

As macro-integrator, we use RK4 scheme with time-step H = T0/(Ñε) and we
approximate the vector field F ε

h by using the fourth-order interpolation formula (2.20).
From (3.1), we thus expect an asymptotic error estimate of the form

errorSAM ≈ C1ε
4 + C2εh

4 + C3(εH)4. (4.4)

The final time of the simulation is taken as T0/ε with T0 = π/4, while numerical
errors are defined by

error = ‖ψref − ψn‖ℓ2 =




Nx−1∑

j=0

|ψref
j − ψn

j |2∆x




1/2

,

where ψn denotes the numerical solution. Finally, we take the value ∆x = 2π/Nx

for the mesh size. For ε = 2−3, . . . , 2−8, the reference solution ψref is obtained by
the TSFP4 method on the whole time interval [0, T0/ε], with a time-step h = επ/214.
For ε = 2−9, 2−10 (and smaller ε), the reference solution is obtained by SAM with
(εH, h) = (π/212, π/212) using a higher-order interpolation method for the vector field
(8th-order interpolation).

Our first results concern the accuracy of SAM and confirm estimate (4.4). On
the left of Fig. 4.1, we present the error versus the macro step for H = π/(2jε),
j = 5, 6, . . . , 11, with small fixed micro step h = π/212 The different curves correspond
to the values ε = 2−5, . . . , 2−10. On the right of Fig. 4.1, we represent the error versus
the micro-step, for h = π/25, . . . , π/211, with small fixed macro step H = π/(212ε).
Again, the different curves correspond to the values ε = 2−5, . . . , 2−10. Fourth-order
accuracy in εH (with a uniform constant w.r.t. ε) and h (with a linear constant in ε)
can be clearly observed. On each curve, a saturation appears, due to the interpolation
error. As expected, the level of this saturation error is proportional to ε4.

Next, we investigate numerically the accuracy of the TSFP4 method. Table 4.1
lists errors obtained by TSFP4 with time-step h for different ε. We obtain an error
of the form

errorTSFP4 ≈ C4εh
4, (4.5)

as expected from [11], since the micro time step is a submultiple of the period 2π.
Thirdly, we present efficiency diagrams. In Figure 4.2, we represent error versus

the total number Nstep of micro TSFP4 steps, for SAM and for TSFP4. Here, the red
curves with the ’S’ label plot errors of SAM and the dashed blue curves with the ’T’
label plot errors of TSFP4. The error of SAM for a fixed number of TSFP4 steps is
chosen as the minimal among all possible choices (Hj , hk), i.e. Hj = π/4/(2jε), hk =

5Such methods alternate in a clever way exact resolutions of the kinetic and the potential part
of the Hamiltonian.
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Fig. 4.1. (NLS on the torus) Accuracy diagrams of SAM. Error versus macro step H for
ε = 2−j/2, j ∈ {5, 6, 7, 8, 9, 10} (left) and error versus micro step h for the same values of ε (right).

Table 4.1

Errors of TSFP4 for NLS on T2π

ε = 2−3 ε = 2−4 ε = 2−5 ε = 2−6 ε = 2−7 ε = 2−8 ε = 2−9

h = π/24 6.17E-02 3.09E-02 1.54E-02 7.71E-03 3.86E-03 1.93E-03 9.64E-04
h = π/25 5.50E-03 2.63E-03 1.30E-03 6.47E-04 3.23E-04 1.62E-04 8.08E-05
h = π/26 6.15E-04 2.78E-04 1.35E-04 6.71E-05 3.35E-05 1.67E-05 8.37E-06
h = π/27 4.31E-05 1.97E-05 9.61E-06 4.78E-06 2.38E-06 1.19E-06 5.96E-07
h = π/28 2.86E-06 1.28E-06 6.22E-07 3.09E-07 1.54E-07 7.70E-08 3.85E-08
h = π/29 1.82E-07 8.10E-08 3.92E-08 1.95E-08 9.71E-09 4.88E-09 2.43E-09

π/4/2k with j+ k being fixed. Let us estimate from (4.4) and (4.5) theoretical values
of the error versus Nstep, for both methods. For SAM, we have Nstep = C0

hHε so that,
after a simple optimization on (4.4), one obtains an optimal error (assuming that the
best choice for H , h is ensured) under the form

errorSAM ≈ C1ε
4 +

C2
0

√
C2C3ε

(Nstep)2
.

For TSFP4, the number of micro-steps is Nstep = C5

εh . As a consequence, one gets
from (4.5)

errorTSFP4 ≈
C4C

4
5

ε3(Nstep)4
.

On the curves in Figure 4.2, we observe the expected behaviors. The error for SAM
is proportional to 1/(Nstep)

2 and improves proportionally to
√
ε when ε decreases,

whereas the error for the TSFP4 method is proportional to 1/(Nstep)
4 but is degraded

as ε−3 when ε decreases. We can conclude that TSFP4 performs better than SAM
when ε is relatively large, e.g. ε > 2−12, and that SAM tends to perform better for
smaller values of ε. The most striking result concerns the case ε = 2−18 where the
speed-up factor is 100.
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Fig. 4.2. (NLS on the torus) Efficiency diagrams (error versus Nstep) of SAM and TSFP4 for
ε = 2−12, 2−14, 2−16, 2−18.

4.2. NLS on the torus: long-time behavior. In this subsection, we focus
on the long-time behavior of SAM and thus consider NLS on the torus (4.2), (4.3)
with much longer time-intervals, of the form 0 ≤ t ≤ T0/ε

2 (see Remark 2.5, where
the Hamiltonian is now denoted by Eε). Here, we are not so much interested by the
accuracy of the wavefunction ψε itself, but rather by the preservation of mass and
energy, two invariants of (4.2) respectively defined by

mε(t) =

∫ 2π

0

|ψε(t, x)|2dx

and

Eε(t) =
1

2

∫ 2π

0

|∂xψε(t, x)|2dx +
ε

4

∫ 2π

0

2 cos(2x)|ψε(t, x)|4dx.

The number of points for space discretization is taken as Nx = 32. For the micro-
integrator, we use the second-order Strang splitting scheme (TSFP2) with a micro
time-step h = 2π/512, ensuring that the CFL condition h(N/2)2 < 2π is satisfied so
as to avoid the effect of resonances over long times. Finally, we use the second-order
formula (2.19) for the interpolation of the vector field.
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As for the macro-integrators, we experiment with two explicit Runge-Kutta meth-
ods, namely RK2, RK4 and the implicit midpoint rule, whose Butcher tableaux have
the following values:

0
1/2 1/2

0 1
,

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

,
1/2 1/2

1
.

Note that the implicit midpoint rule is a symmetric method of order 2. In our simula-
tions, ε is given the value 2−11 ≈ 5× 10−4 and the final integration time is now taken
as T0/ε

2 with T0 = π/4. On Figure 4.3, we plot in logarithmic scale the time evolu-
tion of the errors on mass (left) and energy (right), for the three macro-integrators
considered. The macro time-step is H = π/(27ε). For the midpoint scheme, as ex-
pected, we observe a very good conservation of mass (error smaller than 2 × 10−11)
and energy (error smaller than 10−9), with no drift over this very long time interval.
In contrast, the two non-symmetric schemes RK2 and RK4 display a linear drift in
time: at the end of the simulation the errors on mass and energy are of order 10−2 for
RK2 and of order 10−7 for RK4. These numerical results corroborate the statements
of Subsection 3.2.

Besides, we investigate longer time performance of SAM with ε = 2−8 and the
final integration time is taken as T0/ε

3. In Figure 4.4, we plot in logarithmic scale
the time evolution of the errors on mass and energy by SAM that is implemented
with implicit midpoint scheme as macro-integrator, Strang splitting method as micro-
integrator and fourth order interpolation of the vector field. The macro time-step is
H = π/(27ε).
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Fig. 4.3. (NLS on the torus) Long time computation of two invariants by Strang splitting
method and three SAM method with macro-integrators: RK2, RK4 and the implicit midpoint scheme.
Error (in log-scale) on mass (left) and error on energy (right) as a function of time 0 ≤ t ≤ T0/ε2
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Fig. 4.4. Long time computation of two invariants by SAM method implemented with implicit
midpoint scheme as macro-integrator and fourth order interpolation of the vector field. Error (in
log-scale) on mass and energy as a function of time 0 ≤ t ≤ T0/ε3 with ε = 2−8.

4.3. Gross-Pitaevskii equation. In this subsection, we present our numerical
results in the case (ii), namely NLS with a harmonic oscillator on the whole space,

i ∂tψ
ε =

[
−1

2
∂xx +

1

2
(x2 − 1)

]
ψε + ε|ψε|2ψε, 0 ≤ t ≤ T0/ε, x ∈ R, (4.6)

ψε(0, x) = ψ0(x), x ∈ R. (4.7)

The micro-integrator is the fourth-order time-splitting Hermite spectral method6

(TSHP4) [3, 24]. The wavefunction is discretized in space by Hermite series as

ψ(x) =
∑N

k=0 ψ̂k hk(x) where hk(x) (k ∈ N), given explicitly in [22], is the (k + 1)-
th eigenfunction of harmonic oscillator L = − 1

2∂xx + 1
2 (x

2 − 1) and is such that
Lhk(x) = khk(x). In practice, we take N = 79. The macro-integrator for SAM is the
RK4 scheme and the fourth-order interpolation formula is used for the approximation
of the vector field.

The initial datum is ψ0(x) = h0(x) + h1(x) and the final integration time is T0/ε
with T0 = 2π. For ε = 2−3, . . . , 2−7, the reference solution ψref is obtained by the
TSHP4 method with a time-step h = π/103 , while for ε = 2−8, 2−9, 2−10 (and smaller
ε), the reference solution is obtained by SAM with H = π/(210ε), h = π/210 and using
8th-order interpolation. As above, numerical errors are computed as discrete ℓ2 norm
of the wavefunction

error = ‖ψref − ψn‖ℓ2 :=




N∑

j=0

|ψref
j − ψn

j |2ωj




1/2

,

where ψn is the numerical solution and the coefficients ωj are the rescaled Gauss-
Hermite quadrature weights [22].

6This method is similar to TSFP4, except that the Fourier basis is replaced with the Hermite
basis.
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Table 4.2

Errors of TSHP4 for Gross-Pitaevskii.

ε = 2−3 ε = 2−4 ε = 2−5 ε = 2−6 ε = 2−7

h = π/25 1.16E-04 6.29E-05 3.28E-05 1.68E-05 8.47E-06
h = π/26 8.06E-06 4.37E-06 2.28E-06 1.17E-06 5.89E-07
h = π/27 5.18E-07 2.80E-07 1.46E-07 7.46E-08 3.73E-08
h = π/28 3.24E-08 1.75E-08 9.06E-09 4.45E-09 1.94E-09

In Figure 4.5, we present accuracy diagrams of the error versus the macro step
H (for different macro steps H = π/(2jε), j = 3, 4, . . . , 11 with fixed micro steps
h = π/212, and diagrams for the error versus the micro step h = π/25, . . . , π/29 with
fixed macro steps H = π/(212ε). The values ε = 2−5, . . . , 2−9 are tested. As in the
case of NLS on the torus, these curves corroborate the error estimate (4.4).

In Table 4.2, we list the errors for the TSHP4 method as functions of ε and the
micro step h. Again, our results also confirm the estimate

errorTSHP4 ≈ C4εh
4. (4.8)
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Fig. 4.5. (Gross-Pitaevskii) Accuracy diagrams of SAM. Error versus macro step H (left) and
error versus micro step h. For both diagrams, the values of ε are 2−j, j ∈ {5, 6, 7, 8, 9} (top to
bottom).

5. Qualitative illustration of energy transfers. In this section, we illustrate
how SAM can be used to explore the qualitative behavior of highly-oscillatory systems.
In the context of nonlinear Schrödinger equations of the form (4.1), the dynamics of
the coefficients (or modes) of the solution –when expanded on the basis of eigenfunc-
tions of A– exhibit interesting phenomena: The nonlinearity in (4.1) indeed induces
coupling effects and energy transfers between modes, that we wish to visualize. As
a first example, the 1D NLS equation on the torus studied in Subsection 4.1 was
already simulated in [10] by SAM and other averaging techniques. Here, we simulate
three other models: Gross-Pitaevskii equation in one dimension and two models in
two dimensions derived in the context of anisotropic confinement.
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Let us briefly describe the phenomenology. The essential assumption here is that
the unbounded operator A has a compact resolvent and that the linear group e−itA

is periodic in time. We recall that, if ψε solves (4.1), then uε = eitAψε satisfies the
filtered equation

i u̇ε(t) = εeitA
(
α(x)

∣∣e−itAuε
∣∣2 e−itAuε

)
, uε(0) = ψ0. (5.1)

This equation is of the form (1.1) and, up to exponentially small remainder terms, we
have uε(t) = Φε(t,Ψε(t, ψ0)), see [10]. Recall that the change of variable u 7→ Φε(t, u)
is P -periodic in time and satisfies Ψε(kP, u) = u for all k ∈ N. Over the typical long
time T/ε of a simulation, it accounts for the high oscillations that one may wish to
avoid. In this situation, it is more appropriate to represent only the function Ψε(t, ψ0)
which, as solution to an autonomous equation (2.4), is slowly varying and gives access
to the long time nonlinear dynamics. SAM was precisely designed with this objective.

After projection on the eigenmodes of A (in practice, Fourier or Hermite modes),
(4.1) takes the equivalent form of an infinite system of coupled ODEs. Denote respec-
tively by (λk)k∈I , (ek(x))k∈I , where I is the set of indices (Z or N in applications),
the eigenvalues and eigenfunctions of A. If

ψε(t, x) =
∑

k∈I

ψk(t) ek(x),

solves (4.1), then each mode ψk satisfies the equation

i
dψk

dt
= λkψk + ε

∑

ℓ,m,n

γk,ℓ,m,n ψℓ ψm ψn, (5.2)

with γk,ℓ,m,n =

∫

Ω

α(x)ek(x)eℓ(x)em(x)en(x)dx.

Introducing the unknown ξk(t) = eitλkψk(t), we obtain the filtered system

i
dξk
dt

= ε
∑

ℓ,m,n

γk,ℓ,m,n e
it(λk−λℓ+λm−λn) ξℓ ξm ξn . (5.3)

In the sequel, we plot and compare the evolution of the moduli |ψk(t)| = |ξk(t)|
of the modes obtained by simulating three models:

• (TSFP4/TSHP4) The original equation (4.1), discretized by a time splitting
method used over the whole time interval [0, T0/ε].

• (SAM) The averaged equation (2.4) associated to (5.3), discretized by SAM.
Here, the macro solver is RK4, the micro solver is TSFP4/TSHP4 and the
fourth-order interpolation formula is used for the approximation of the vector
field. We recall that –up to numerical errors– SAM and TSFP4/TSHP4 will
coincide at the stroboscopic times t = kP , k ∈ N.

• (FAM) The first-order averaged model obtained by replacing F ε in (2.4) by
its first term in its expansion F ε(u) = F1(u) + εF2(u) + . . ., see Remark 2.3.
This model reads

i u̇ε(t) = ε
1

P

∫ P

0

eiτA
(
α(x)

∣∣e−iτAuε(t, x)
∣∣2 e−iτAuε(t, x)

)
dτ (5.4)
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and the corresponding system on the modes ξk reads

i
dξk
dt

= ε
∑

ℓ,m,n∈Λk

γk,ℓ,m,n ξℓ ξm ξn (5.5)

with Λk = {(ℓ,m, n) : λk−λℓ + λm−λn = 0}.
The numerical method for the approximation of the FAM is in fact directly constructed
from (5.4): this ODE is discretized by the RK4 scheme, where the integral defining
the vector field is computed by the rectangle quadrature formula (which is spectrally
convergent since the integrand is P -periodic). For each integral discretization, we use
64 points.

5.1. Gross-Pitaevskii in dimension one. We consider here the one-
dimensional equation (4.6), (4.7) with ε = 10−4. The wave function is approximated
by Hermite pseudospectral series with Nx = 81. Figure 5.1 plots the evolution of
the absolute value of the Hermite coefficients by TSHP4, SAM and FAM. Numerical
parameters are taken as follows: The TSHP4 method is applied with h = 2π

103 , SAM
with (H,h) = ( 2π

104ε ,
2π
400 ) and FAM with h = 2π

104 .
We observe an interesting energy cascade phenomenon, very similar to the case of

NLS on the torus [0, 2π]× [0, 2π] studied in [9] (see also [10] for numerical simulations
by SAM). While the modes greater than 1 are equal to zero initially, they grow
and become significantly large in a characteristic time that depends on the mode.
The point is that, as long as a mode is of order O(ε), it is highly-oscillatory and
its observation by TSFP4 is not convenient on the first diagram (Fig. 5.1 top left).
Instead, as we said in the introduction of this section, SAM cleans up the oscillations
associated to the change of variable Φε and it is finally easier to observe the energy
cascade on the second diagram (Fig. 5.1 top right). The curves represented on third
diagram (FAM) are also very smooth, but show a dynamics that is correct only when
modes have reached a value above a threshold O(ε): under this level, the dynamics
given by FAM is inaccurate.

5.2. 2D NLS on an anisotropic torus. We consider the cubic NLS equation
on a very thin bidimensional torus:

i∂tψ
ε = −∆ψε + |ψε|2ψε, 0 < t ≤ T0, (x, y) ∈ [0, 2π]× [0, 2πε],

ψε(0, x, y) = ψ0(x, y/ε), (x, y) ∈ [0, 2π]× [0, 2πε].

Here, the dimensionless parameter ε is the ratio between the typical length-scales
in directions y and x. Let us rescale the variables, setting (t, x, y) = (ε2t′, x′, εy′)
(then omitting the primes for simplicity in the new equation). The space domain
T2
2π = [0, 2π]× [0, 2π] is now independent of ε and we obtain

i∂tψ
ε = −∂yyψε + ε2

(
−∂xx + |ψε|2

)
ψε, 0 < t ≤ T0/ε

2, (5.6)

ψε(0, x, y) = ψ0(x, y), (x, y) ∈ T
2
2π . (5.7)

This equation is still of the form (2.12). However, the nonlinearity g is now unbounded
in any Sobolev space. In such case, the exponential estimates proved in [10] are not
valid. One can nevertheless expect polynomial estimates for smooth initial data,
which are enough to give foundations to SAM.

As initial data for (5.6), we take ψ0(x, y) = 1+2 cos(x)+2 cos(y). The numerical
parameters of our simulations are the following. The wave function is approximated
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Fig. 5.1. (Gross-Pitaevskii in dimension one) Evolution of Hermite coefficients by TSHP4 (left
top), SAM (right top) and FAM (center bottom).

by Fourier series with Nx = 128 and Ny = 128. The TSFP4 method is applied with
a time step h = 2π

500 , SAM is applied with a macro step H = 2π
104ε2 and a micro

step h = 2π
400 and the first averaged model (FAM) is computed with the time step

h = 2π
104 . In Fig. 5.2, we plot the evolution of the Fourier coefficients |ψ̂n,0| and

|ψ̂0,n| with n = 0, 1, . . . , 7, obtained by the three different methods, for ε = 0.01 and
t ∈ [0, 2π/ε2].

The following observations can be made. The three diagrams on the left are very
similar, indicating that the first averaged model FAM (which is cheaper) is sufficient

to describe correctly the evolution of modes |ψ̂n,0|. However, on the three diagrams
of the right, it can be inferred that FAM is not able to capture the dynamics of higher
modes ky ≥ 2. Some interesting phenomena appearing on these higher modes in y
can only be observed by SAM ( on TSFP4, these modes are highly-oscillatory): for
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instance, the modes seem to arranged by pairs as

|ψ̂0,0|, |ψ̂0,1| = O(1), |ψ̂0,2|, |ψ̂0,3| = O(ε2), |ψ̂0,4|, |ψ̂0,5| = O(ε4), |ψ̂0,6|, |ψ̂0,7| = O(ε6), . . .

5.3. 2D anisotropic Gross-Pitaevskii equation. We consider here the
Gross-Pitaevskii equation with a strongly anisotropic harmonic confinement potential:

i∂tψ
ε = −1

2
∆ψε +

1

2

(
x2 +

y2

ε4

)
ψε + β|ψε|2ψε, 0 < t ≤ T0, (x, y) ∈ R

2,

ψε(0, x, y) = ψ0(x, y/ε), (x, y) ∈ R
2,

see [4] for the physical context.
In order to rewrite this equation in our framework, the adequate change of variable

is again (t, x, y) = (ε2t′, x′, εy′), which yields the following model on the new unknown
(still denoted ψε(t, x, y)):

i∂tψ
ε =

(
−1

2
∂yy +

y2

2

)
ψε + ε2

(
−1

2
∂xx +

x2

2
+ β|ψε|2

)
ψε, 0 < t ≤ T0/ε

2, (5.8)

ψε(0, x, y) = ψ0(x, y), (x, y) ∈ R
2. (5.9)

Our initial data is

ψ0(x, y) = h0(y)(h0(x) + h2(x)),

where hk are the Hermite functions (see Subsection 4.3). The wave function is approx-
imated by Hermite pseudospectral series with Nx = Ny = 81. In the computations,
TSHP4 is applied with a time step h = P

100 , SAM is used with (H,h) = ( P
103ε2 ,

P
100 )

and FAM is used with the time step h = P
103 .

On Figure 5.3, we plot the evolution of Hermite modes for ε = 10−2 and β = 5.
Similar comments as for 2D NLS on an anisotropic torus can be done. For a description
of modes 0 in y, FAM is sufficient. Interesting dynamics can be observed on higher
modes in y, and SAM is the more appropriate model for the investigation of these
dynamics, since it filters out all the oscillations.
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