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Abstract

Based on the recently-developed sum-of-exponential (SOE) approximation, in this article, we propose
a fast algorithm to evaluate the one-dimensional convolution potential φ(x) = K ∗ ρ =

∫ 1
0 K(x − y)ρ(y)dy

at (non)uniformly distributed target grid points {xi}Mi=1, where the kernel K(x) might be singular at the
origin and the source density function ρ(x) is given on a source grid {yj}Nj=1 which can be different from
the target grid. It achieves an optimal accuracy, inherited from the interpolation of the density ρ(x), within
O(M +N) operations. Using the kernel’s SOE approximation KES, the potential is split into two integrals:
the exponential convolution φES = KES ∗ ρ and the local correction integral φcor = (K − KES) ∗ ρ. The
exponential convolution is evaluated via the recurrence formula that is typical of the exponential function.
The local correction integral is restricted to a small neighborhood of the target point where the kernel
singularity is considered. Rigorous estimates of the optimal accuracy are provided. The algorithm is ideal
for parallelization and favors easy extensions to complicated kernels. Extensive numerical results for different
kernels are presented.

Keywords: one dimensional convolution, sum of exponentials, singular kernel, discrete density

1. Introduction

Pairwise interaction is common and important in computational physics and practical engineering, and
it is usually long-ranged and described by a continuous/discrete convolution. For example, the electrostatic
interactions of charged carriers are essential in simulating lightning, blue jet/gigantic jet in atmospheric
science, or in the corona discharges around power transmission lines [12]. Such interactions are originally
three dimensional and the evaluations will cost huge amount of computational resources. Reduction to lower
dimensional convolutions is common and necessary for meaningful long-time simulations [17, 21]. Here we
focus on the following rescaled one-dimensional convolution

φ(x) =
∫ 1

0
K(x− y)ρ(y)dy, ∀ x ∈ [0, 1], (1.1)

where the kernel K(x), x ∈ [−1, 1] might be singular at the origin and ρ(x) is the source density. Numerically,
the density ρ(x) may be given on a discrete source grid of N points, denoted as S := {yj}Nj=0 which might
be distributed nonuniformly, and the target grid of M points, denoted as T := {xi}Mi=0, does not necessarily
coincide with the source grid. Usually, the source grid is given as finite difference/element/volume grid and
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is often nonuniform, so is the target grid. In this paper, we aim to design an accurate and fast algorithm
for (1.1) on general grids.

When both the source and target grids are uniformly distributed, the evaluation (1.1) boils down to
a discrete convolution [10, 14, 19] and can be accelerated via the discrete Fast Fourier Transform within
O(N logN) operations. However, on nonuniform grids, a simple direct summation of the resulted quadra-
ture costs O(MN) operations, and usually bottlenecks practical simulations, therefore, it is imperative to
design fast algorithms for better efficiency while maintaining the accuracy. There have been several work
dealing with such convolutions. In 1999, Yarvin and Rokhlin proposed an improved Fast Multipole Method
[16] for the one dimensional discrete convolution with singular kernels, including x−1, log(x) and x−1/2.
Subsequently, Beylkin [4, 5] designed a fast discrete convolution algorithm of complexity O(NQ), where
Q is the number of exponentials, for a wider range of kernels. Recently, Greengard et al [8] proposed an
algorithm for finding nearly optimal SOE approximation for non-oscillatory functions, and applied the SOE
to calculate high dimensional spatial volume convolutions. Similar ideas using the recurrence scheme of the
exponential function has been developed and applied to many problems in various fields, e.g., the temporal
convolution whose integration domain is [0, t] rather than the whole interval [0, T ], in the context of nonre-
flecting boundary condition of the Schrödinger equation, wave equation, and fractional temporal derivatives
(see, for example [2, 13, 18]).

To compute the potential φ, we first construct a sum-of-exponential approximation of the kernel

KES(x) :=
Q∑
q=1

ωqe
−αqx, with ωq, αq ∈ C, <(αq) > 0, (1.2)

such that

‖K(x)−KES(x)‖∞ ≤ ε, ∀ x ∈ [δ, 1], (1.3)

with a small truncation parameter 0 < δ < 1 and a prescribed accuracy 0 < ε� 1, which can be controlled
as small as possible, e.g., 10−14 ∼ 10−12. The number of exponentials Q often depends on the prescribed
precision ε logarithmically [7, 9]. Then, using the above SOE approximation, the potential is split as

φ(x) =
∫ 1

0
(K −KES)(x− y)ρ(y)dy +

∫ 1

0
KES(x− y)ρ(y)dy

=
(∫

[0,1]∩[x−δ,x+δ]
+
∫

[0,1]\[x−δ,x+δ]

)
(K −KES) (x− y) ρ(y) dy + φES(x)

:= φcor(x) + φδ(x) + φES(x). (1.4)

The exponential convolution

φES(x) :=
∫ 1

0
KES(x− y)ρ(y)dy =

Q∑
q=1

ωq

∫ 1

0
e−αq|x−y|ρ(y)dy, (1.5)

can be computed within O((M + N)Q) operations for each exponentials via recurrence formula, and the
correction integral

φcor(x) :=
∫

[0,1]∩[x−δ,x+δ]
(K −KES)(x− y)ρ(y)dy, (1.6)

will be evaluated pointwisely which also costs O(M) operations. The remainder integral φδ(x) is negligible
because

|φδ(x)| ≤
∫

[0,1]\[x−δ,x+δ]
|(K −KES(x− y)| |ρ(y)|dy ≤ ε‖ρ‖L1 . (1.7)
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Therefore, we have

φ(x) ≈ φES(x) + φcor(x) +O(ε). (1.8)

The convolution evaluation boils down to the computation of the exponential convolution φES(x) and the
local correction integral φδ(x) on the given discrete target grid.

The paper is organized as follows. In Section 2, we first briefly review the algorithm for finding the SOE
approximation, then describe the discrete exponential convolution and local correction integral computation
in details, followed by a discussion on the extension to asymmetric kernels and the error estimates. Extensive
numerical results are reported in Section 3. Finally, some conclusions are drawn in Section 4.

2. Numerical algorithm

In this section, we briefly review the black-box algorithm for constructing the SOE approximation, and
introduce the computation of the exponential convolution φES(xi) and local correction integral φcor(xi) in
details. A discussion on the extension to asymmetric kernels and the error estimate are provided in the last
two subsections. Note that the density ρ(x) is given on a discrete N -point source grid S, and we aim to
evaluate the potential on M -point target grid T which does not necessarily coincide with the source grid.

As described earlier, the evaluation is composed of three parts, i.e., the SOE approximation, the ex-
ponential convolution and the local correction integral. For sake of better readability, we first present the
algorithm below, then add details in later subsections.

Algorithm 1 Generalized SOE based fast convolution algorithm.
Require: Given a precision requirement ε, the computational grid {yj}Nj=0, the convolution kernel K, and

the discrete density ρj , compute the potential φ(xi) defined in (1.1).
1: Precomputation stage: select appropriate δ and construct the SOE approximation of K on [δ, 1].
2: Compute the potential φES(xi) as described in subsection (2.2).
3: Compute the potential φcor(xi) as shown in subsection (2.3).
4: Sum up φES(xi) and φcor(xi) to achieve φ(xi).

2.1. Black-box algorithm for the SOE approximation
The algorithm was first described in [8], and consists of two steps. First, an accurate but inefficient SOE

approximation is obtained via a least squares procedure. That is, we select a large set of the exponential
nodes in such a way that the associated set of exponential functions are sufficient to represent the given
function, determine an oversampled grid on the given interval for the given function, and calculate the
weights of the SOE approximation by matching the function values on this discrete grid with the SOE
approximation in the sense of least squares. The least squares problem is simultaneously overdetermined
and rank-deficient, but can be solved in a backward stable fashion, namely, via an SVD based algorithm. This
will lead to a solution with a prescribed residual error. Second, a standard algorithm in model reduction
is applied to reduce the number of exponentials to achieve a nearly optimal SOE approximation. For
details, we refer the readers to [11]. Related SOE codes are now available at Shidong JIANG’s homepage
https://web.njit.edu/ jiang/pub.html.

2.2. Fast exponential convolution via recurrence: φES(xi)
We notice that it is straightforward to parallelize the Q-term exponential convolution (1.5), and it is

sufficient to describe the algorithm for one-exponential convolution, i.e., the convolution of e−αx with the
density. It is clear that the convolution with the exponential function can be viewed as the solution to the
ordinary differential equation u′ = −αu+ ρ. Thus, such convolution can be computed in linear time using a

3

https://web.njit.edu/~jiang/pub.html
https://web.njit.edu/~jiang/pub.html


simple marching scheme. Alternatively, using the recurrence formula that stems from translation invariant
property of the exponential [4, 16], the potential at xi, i = 1, . . . ,M can be rewritten as follows

I(xi) :=
∫ 1

0
e−α|xi−y|ρ(y)dy =

N∑
j=1

∫ yj

yj−1

e−α|xi−y|ρ(y)dy

=
∑
yj≤xi

∫ yj

yj−1

e−α(xi−y)ρ(y)dy +
∫ yl0

yl0−1

e−α|xi−y|ρ(y)dy +
∑
xi<yj

∫ yj+1

yj

e−α(y−xi)ρ(y)dy

:= Pi + Li + Ji,

where Pi, Li and Ji are the first, second and last integral respectively and index l0 ∈ N is determined such
that xi lies in [yl0−1, yl0 ].

We shall treat the above three terms respectively. For the third term Ji, we have

Ji = e−α(xi+1−xi)
∑

xi+1<yj

∫ yj+1

yj

e−α(y−xi+1)ρ(y)dy +
∑

xi<yj≤xi+1

∫ yj+1

yj

e−α(y−xi)ρ(y)dy

= e−α(xi+1−xi)Ji+1 +
∑

xi<yj≤xi+1

∫ yj+1

yj

e−α(y−xi)ρ(y)dy := e−α(xi+1−xi)Ji+1 + JCi . (2.9)

Once JCi is available for each i, all the Ji can be computed recursively from JM to J1. In fact, all the JCi
can be calculated explicitly. Specially, consider a linear interpolation of ρ(y) over [yj , yj+1], we have

JCi =
∑

xi<yj≤xi+1

∫ yj+1

yj

e−α(y−xi)
(
ρj+1

y − yj
yj+1 − yj

+ ρj
yj+1 − y
yj+1 − yj

)
dy =

∑
xi<yj≤xi+1

(ρjΓj + ρj+1Γj+1),

where the local coefficients Γj ,Γj+1 have analytical formula, depending on yj , yj+1, xi and the exponent α,
and we omit it here for brevity. High order polynomial interpolation leads to similar local multiplications.
Therefore, one can compute all the Ji within O(M + N) operations. Similarly, we can calculate the first
integral Pi recursively within O(M + N) operations. All the integral Li can be computed within O(M)
operations.

Collecting all the Q-term exponential (1.2), we get φES(xi). The overall computation cost is O((M+N)Q)
with a storage requirement O(M+N +Q).

2.3. Fast local correction: φcor(xi)
As is seen that SOE well approximates K(x) for larger x, which results in a numerically compact

supported integrand in (1.6), the effective integration interval is restricted to a small neighborhood of xi,
i.e.,

φcor(xi) =
∫

[0,1]∩[xi−δ,xi+δ]
(K −KES)(xi − y)ρ(y)dy. (2.10)

The effective interval may span several elements, and the element number depends on δ and grid adaptivity.
For example, for xi, one will go through [yi0 , yi0+1], . . . , [yi1−1, yi1 ] where yi0 is the largest point that is no
greater than xi − δ and yi1 is the smallest point which is no less than xi + δ.

To integrate over the effective intervals, we first interpolate the density ρ(x) using local polynomials,
then integrate the SOE and kernel part respectively. The SOE integration is computed the same way
as shown above, and the kernel part is reduced to convolution with polynomials. The kernel integration
may have analytical expressions, e.g., convolution with the power function 1/xα results in polynomial-form
solutions. While for a more general kernel, it is usually not possible, or at least it takes great efforts to find

4



explicit solutions. In such cases, it is feasible to replace K(x) by its generalized m-th order Taylor series
approximation, i.e.,

K(x) ≈ Km(x) := C0(x) + C1 x+ C2 x
2 + . . .+ Cm xm, for |x| < δ, (2.11)

where C0(x) is the leading order asymptotic of the kernel, and might be singular. With such substitution, the
kernel contribution boils down to a polynomial-polynomial convolution, and it is polynomial-form solution
too. Discrepancy function Emcor(xi) :=

∫
[0,1]∩[xi−δ,xi+δ](K −Km)(xi − y)ρ(y)dy is estimated as follows:

|Emcor(xi)| ≤
∣∣∣ ∫ xi+δ

xi−δ
(K −Km)(xi − y)ρ(y)dy

∣∣∣
≤

∫ δ

−δ

∣∣∣(K −Km)(y)
∣∣∣ ∣∣ρ(xi − y)

∣∣dy
≤ C δm+1

∫ δ

−δ
|ρ(xi − y)

∣∣dy ≤ C δm+1‖ρ‖L1 ,

and it immediately implies ‖Emcor‖∞ ≤ Cδm+1‖ρ‖L1 . The integer m and parameter δ are chosen such that
‖Emcor‖ is small enough. For weak singular and nearly singular kernels, it is important to have some a-priori
asymptotics around the singularity point.

The number of effective intervals for each xi depends on δ and the grid adaptively, and is basically O(1),
therefore the total cost of computing all the φcor(xi) is O(M). Summing up φES(xi) and φcor(xi), we have
the potential φ(xi). In total, the overall computation cost is O((M + N)Q) + O(M), and the maximum
storage requirement is O(M+N +Q).

Remark 2.1. We remark here that it is easy to parallelize the second step, which takes up most of the
computational efforts, leading to a further reduction on the computational time if needed.

2.4. Adaptation to asymmetric kernels
The above algorithm works only for symmetric kernels, i.e., K(−x) = K(x), and cannot be applied

directly to the asymmetric case. For asymmetric kernels, we should modify the algorithm as follows. First,
instead of approximating the kernel over [δ, 1] by a single SOE approximation, we construct two different
SOE approximations over [δ, 1] and [−1,−δ], denoted as K+

ES and K−ES with numbers of exponentials Q+

and Q− respectively.
For the exponential convolution (2.2), in order to utilize the recurrence formula, we shall adopt K+

ES(x)
for positive x, K−ES for negative x. The overall computation cost is O((M+N)(Q+ + Q−)) with a storage
requirement O(M+N +Q+ +Q−). For the local correction integral (2.3), only the convolution of SOE and
the polynomials needs to updated, where the kernel is now switched as K+

ES and K−ES.

2.5. Error estimates
The convolution is decomposed as φ(x) = φES(x)+φcor(x)+φδ(x) as shown in (1.4). According to (1.7),

we do not need to compute φδ. Therefore, the numerical evaluation φh(x) consists of two integrals

φh(x) = φhES(x) + φhcor(x), (2.12)

where φhES, φ
h
cor are approximations of φES, φcor by replacing the density ρ with its approximation ρh(x),

and h = max0≤j<N (xj+1 − xj) denotes the largest mesh size of the discrete grid.

For ρ(x) ∈ C2([0, 1]), assuming ρh(x) is a linear interpolation approximation of ρ(x), by standard
numerical analysis, we know that the interpolation error is

|ρ(x)− ρh(x)| ≤ C‖ρ(2)‖∞(yj+1 − yj)2 ≤ C‖ρ(2)‖∞ h2,∀ x ∈ [yj , yj+1], j = 0, . . . , N − 1.
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First, the error estimate of the exponential convolution reads as follows

|φES(x)− φhES(x)| =

∣∣∣∣∣∣
Q∑
q=1

ωq

N−1∑
j=0

∫ yj+1

yj

e−αq|x−y|(ρ(y)− ρh(y))dy

∣∣∣∣∣∣
≤ Ch2‖ρ(2)‖∞

 Q∑
q=1
|ωq|

N−1∑
j=0

∫ yj+1

yj

e−αq|x−y|dy


≤ Ch2‖ρ(2)‖∞

(
Q∑
q=1
|ωq|

)
≤ C(K, δ, ε) h2‖ρ(2)‖∞,

where C(K, δ, ε) is bounded and depends on the SOE approximation, and it immediately implies

‖φES − φhES‖∞ ≤ C(K, δ, ε) h2‖ρ(2)‖∞.

Second, the error estimates for the correction integral are

|φcor(x)− φhcor(x)| =

∣∣∣∣∣
∫

[0,1]\[x−δ,x+δ]
(K −KES)(x− y) (ρ(y)− ρh(y)) dy

∣∣∣∣∣
≤ Ch2‖ρ(2)‖∞

∣∣∣∣∣
∫ x+δ

x−δ
(K −KES)(x− y)dy

∣∣∣∣∣
≤ Ch2‖ρ(2)‖∞

(∣∣ ∫ δ

−δ
K(t)dt

∣∣+
∣∣ ∫ δ

−δ
KES(t)dt

∣∣)
≤ Ch2‖ρ(2)‖∞ (C(K, δ) + δ C(K, δ, ε))

where C(K, δ) = |
∫ δ
−δK(t)dt| is bounded because the convolution (1.1) is well-defined, and C(K, δ, ε) is

defined as above and bounded too. Therefore, we have the following estimates

‖φcor − φhcor‖∞ ≤ Ch2‖ρ(2)‖∞(C(K, δ) + δ C(K, δ, ε)). (2.13)

Finally, we have the total estimates

‖φ− φh‖∞ ≤ C(K, δ, ε)h2‖ρ(2)‖∞ + ε‖ρ‖L1 , (2.14)

where C(K, δ, ε) is a bounded constant depending on the kernel K and SOE parameters δ, ε.

3. Numerical results

To demonstrate the accuracy and efficiency, we carry out several numerical experiments. All the numer-
ical errors are calculated in the relative maximum norm, defined as follows:

Eh := ‖φ− φh‖l
∞

‖φ‖l∞
= maxxi∈Th |φ(xi)− φh(xi)|

maxxi∈Th |φ(xi)|
. (3.15)

Here φh is the numerical solution and φ is the reference solution. When the reference solution is not
available analytically, Eh is defined as ‖φh − φh/2‖l∞ := maxxi∈Th |φh(xi) − φh/2(xi)|. The convergence
order is calculated via the formula log(Eh/Eh/2)/ log(2). The computational time shown here is calculated
as the average of 50 evaluations without any parallel acceleration. The interval is uniformly discretized on
the grid Th :=

{
xj = jh = j 1

N , j = 0, . . . , N
}

. For simplicity, the target points are chosen the same as source
points unless otherwise stated.

The algorithm has been implemented in FORTRAN, and all reported timing results are obtained using
a single 2.60GHz Intel(R) Core(TM) i7-6660U CPU with a 4-MB cache with the Intel compiler ifort and
optimization level -O3.
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3.1. Multiquadrics
We consider multiquadric kernels that are quite common in electrostatic computation[20, 21]. The kernel

is K(x) = 1√
x2+a2 , 0 < a� 1, and the potential φ(x) generated by some simple source functions are given

explicitly as

φ(x) =


log
(√

(1−x)2+a2+(1−x)√
x2+a2−x

)
, ρ(x) = 1,

√
a2 + (1− x)2 −

√
a2 + x2 + x log

(
(1−x)+

√
a2+(1−x)2

√
a2+x2−x

)
, ρ(x) = x.

(3.16)

In this example, the kernel parameter is chosen a = 10−3. The local correction integral is computed
exactly, thus waiving the Taylor approximation (2.11). The SOE approximation parameters are chosen as
ε = 10−12, δ = 10−8, and the number of exponentials is 139.

First, we present the accuracy and efficiency results for a linear source function ρ(x) = 1
2 (1 + x) for

different N in Table 1. The exact solution φ(x) is a linear combination of (3.16). As the source function is
fully resolved by piecewise elements, the accuracy depends only on the approximation parameters ε and δ,
which are sufficiently small to ensure accurate evaluation, see (2.14). The computational time scales linearly
with N as expected, and it takes about 3 seconds for one million points.

Second, we choose a Gaussian density ρ(x) = e−4(x− 1
2 )2 and adopt a linear element approximation.

Table 2 displays the successive errors Eh for different mesh sizes, and the convergence rates. A second order
convergence in mesh size h is clearly shown in Table 2.

Table 1: Accuracy and CPU time (in seconds) for multiquardics K(x) = 1√
x2+a2

with different N .

N 102 103 104 105 106

Eh 3.564E-11 1.208E-10 2.183E-11 1.576E-10 3.629E-9
Time 4.190E-4 2.948E-3 2.676E-2 2.950E-1 3.686

Table 2: Second order convergence for multiquardics kernel with Gaussian density ρ(x) = e−4(x− 1
2 )2

and h0 = 10−3.

h/h0 1 1/2 1/4 1/8 1/16
Eh 5.876E-6 1.469E-6 3.675E-7 9.204E-8 2.307E-8
Rate 2.000 1.999 1.998 1.996 -

3.2. Power function
We consider the power kernel K(x) = x−α with 0 < α < 1, which has close connections with temporal

fractional derivative. The potential φ(x) generated by a linear source ρ(x) is given explicitly as

φ(x) =


1

1−α
(
x1−α + (1− x)1−α) , ρ(x) = 1,

x(2−α)

(1−α)(2−α) + x(1−x)1−α

1−α + (1−x)2−α

2−α , ρ(x) = x.
(3.17)

The SOE approximation parameters are chosen as ε = 10−12, δ = 10−6, and the number of exponentials
for different α is around 120. Similarly to the multiquardics kernel, the local correction integral is also
computed exactly, thus waiving the Taylor approximation (2.11).
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First, we present the number of exponentials Q and the accuracy results for a linear source function
ρ(x) = 1

2 (1 + x) in Table 3 on uniform grids and the Chebyshev grids (xj = 1
2 (1 − cos(πjN ))) for different

exponents α, and the exact solution φ(x) is a linear combination of (3.17). Second, CPU time (in seconds) is
shown in Table 4 for the randomly distributed grid with α = 1

2 , from which the linear scaling with respect to
N is clearly observed. Finally, we present the successive errors Eh and its convergence rate for the Gaussian
density ρ(x) = e−x

2 in Table 5, from which one can see clearly a second order convergence rate.

Table 3: Accuracy for the power kernel K(x) = x−α with N = 104 on the uniform and Chebyshev grid.

α 0.25 0.5 0.75 0.85 0.95 0.99
Q 122 123 125 125 127 127
Uniform 1.964E-11 2.898E-10 7.606E-9 7.523E-9 1.390E-8 4.012E-9
Chebyshev 1.830E-11 3.255E-10 4.704E-9 1.108E-8 1.418E-8 4.766E-9

Table 4: CPU time (in seconds) for the power kernel K(x) = x−
1
2 case on randomly nonuniform grids.

N/104 1 2 4 8 16 32 64
Time 2.921E-02 5.910E-02 1.234E-01 2.828E-01 5.989E-01 1.297 2.296

Table 5: Second order convergence for power kernels with Gaussian density ρ(x) = e−x
2 and h0 = 0.1.

h/h0 1 1/2 1/4 1/8 1/16 1/32
α = 1

4 Eh 8.808E-4 2.247E-4 5.685E-5 1.431E-5 3.592E-6 9.000E-7
Rate 1.971 1.983 1.990 1.994 1.997 -

α = 1
2 Eh 1.732E-3 4.600E-4 1.194E-4 3.053E-5 7.819E-6 1.937E-6

Rate 1.913 1.946 1.967 1.965 2.013 -
α = 3

4 Eh 3.556E-3 1.006E-3 2.733E-4 7.295E-5 1.935E-5 4.991E-6
Rate 1.822 1.880 1.905 1.915 1.955 -

3.3. Kernel arising from photoionization
We consider a cylindrically symmetric density, i.e., ρ(x, y, z) = ρ(r, 0, z), r =

√
x2 + y2. The original

three dimensional convolution

φ(x) = U ∗ ρ, with U(x) = e−λ1|x| − e−λ2|x|

|x|3 , x ∈ R3, λ1, λ2 ∈ R+, (3.18)

is also cylindrically symmetric. With a further assumption that the density is distributed uniformly over a
small disk, i.e., ∂ρ

∂r = 0, 0 < r ≤ rd, the potential along z-axis is given below

φ(z) = 2π
∫ z2

z1

ρ(z′)dz′
∫ rd

0
U
(√

r2 + (z − z′)2
)
rdr := 2π

∫ z2

z1

ρ(z′)K(z − z′)dz′. (3.19)
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The kernel K(z) is symmetric and reads as follows

K(z) =
∫ rd

0

exp(−λ1R)− exp(−λ2R)
R3 rdr =

∫ Rd

z

exp(−λ1R)− exp(−λ2R)
R2 dR =

∫ λ2

λ1

dλ

∫ Rd

z

exp(−λR)
R

dR

= (e−λ1z − e−λ2z)Rd − (e−λ1Rd − e−λ2Rd)z
Rdz

+ λ1(Γ0(λ1Rd)− Γ0(λ1z)) + λ2(Γ0(λ2z)− Γ0(λ2Rd))

where R =
√
r2 + z2, Rd =

√
r2
d + z2 and Γ0(z) = Γ(0, z) :=

∫∞
z
t−1e−tdt is the incomplete gamma

function[1]. The asymptotic analysis of K(z) around z = 0 is

K(z) ≈ (λ1 − λ2) log(z) + (γe − 1)(λ1 − λ2)

+λ1Γ0(rdλ1)− λ2Γ0(rdλ2) + λ1 log(λ1)− λ2 log(λ2) + e−rdλ2 − e−rdλ1

rd
+ 1

2(λ2
2 − λ2

1)z. (3.20)

The original convolution (3.19) is rescaled to the standard form

φ̃(x̃) = 2π(z1 − z0)
∫ 1

0
K̃(x̃− ỹ) ρ̃(ỹ) dỹ, x̃ ∈ [0, 1], (3.21)

with ρ̃(x̃) = ρ(x), x = z0 + (z1 − z0)x̃ and K̃(z̃) = K(z), z = (z1 − z0)z̃.

Here we choose a set of parameters: λ1 = 5.32, λ2 = 304, z1 = 0, z2 = 100, rd = 0.1 [22]. The SOE
approximation parameters are set ε = 10−10, δ = 10−6, and the number of exponentials is 174. In the local
correction integral (2.10), the kernel can not be integrated simply like in the last two examples. Therefore, we
use the first order Taylor series approximation for the kernel, i.e., setting m = 1 in (2.11), and the remainder
is Cδ2‖ρ‖L1 ≈ 10−12, which is practically small enough to guarantee the second order convergence O(h2).
Table 6 displays the successive errors Eh and the convergence rate for a Gaussian density ρ(x) = e−4(x−1/2)2 ,
from which one can observe a second order convergence clearly.

Table 6: Second order convergence for photoionization kernel with Gaussian density ρ(x) = e−4(x− 1
2 )2

and h0 = 0.005.

h/h0 1 1/2 1/4 1/8 1/16 1/32
Eh 2.826E-1 7.076E-2 1.770E-2 4.427E-3 1.107E-3 2.767E-4
Rate 1.998 1.999 1.999 1.999 2.000 -

4. Conclusions

We proposed an accurate and fast algorithm for the one-dimensional spatial convolution based on sum-
of-exponential (SOE) approximation of the kernel. The convolution evaluation boils down to the exponential
convolution φES = KES ∗ρ and the local correction integral φcor(x) =

∫
[0,1]∩[x−δ,x+δ](K−KES)(x−y)ρ(y)dy,

and both are computed in O(M + N) operations on discrete uniform/nonuniform grids. The exponential
convolution is calculated via standard recurrence formulas. The accurate local correction calculation is
done by approximating the density with its low order Taylor series in a small neighborhood of length δ and
integrating the kernel’s singularity with polynomials as accurately as possible. Our algorithm is ideal for
parallelization and favors easy extensions to complicated kernel with SOE. Extensive numerical results for
different kernels have shown its efficiency, accuracy and easy extension, which implies its possible application
in real simulations.
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